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PREFACE

A review of the proceedings from the past workshops and the program for

the current workshop shows a continued trend toward a more unified view of

rotordynamlcs instability problems and several encouraging new analytical devel-

opments. Test programs that were in existence two years ago continue to yield

new reference data. Results from programs developed in the interim are also

reported.

Without wishing to slight any authors, the following papers appear to be

of particular interest:

(1) Shemeld's paper is useful in conveying the experience and philosophy

of "design for stability" from a major high-pressure compressor manufacturer.

(2) Dletzen and Nordmann's paper is the first published effort to merge

classical perturbation analysis with computational fluid dynamics (CFD). This

approach promises to yield affordable rotordynamlc coefficients with the flex-

ability and power of CFD approaches.

(3) Klrk's paper on the influence of the Impeller-shroud path on the inlet

tangential velocity of compressor wear-rlng seals is particularly important

given its implications for swirl brakes and seal wear.

(4) Childs and Sharrer's experimental results on labyrinth seals are the

first published data that separately identify direct and cross-coupled stiff-

ness and damping coefficients.

(5) San Andres and Vance's paper represents a significant advance in the

analysis capability for squeeze-film dampers by accounting for both the con-
vective and temporal acceleration terms, which are traditionally ignored in

"Reynolds equation" types of analysis. Their results show that these terms

are significant for many damper applications.

(6) As a group, the magnetlc-bearlng papers are of considerable interest

and show the growing commercial interest in this new rotatlng-equlpment devel-

opment. An expansion of this session is planned for the next workshop.

(7) Chllds' paper on Impeller-shroud surfaces is the first analytical

approach for predicting the shroud influence on impeller forces. Test results
at Sulzer Brothers, Ltd., and California Institute of Technology have suggested

that the leakage path along the shroud significantly affects dynamic impeller
forces.

We are confident that you will find all of the papers in this proceedings

to be of interest. Please read them and pick your own favorites.

This workshop was organized to continue addressing the general problem of

rotordynam_c instability by gathering those persons with immediate interest,
experience, and knowledge of this subject for a discussion and review of both

past stability problems and present research and development efforts. The
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intent of the workshop organizers and sponsors is that the workshop and this

proceedings provide a continuing impetus for an understanding and resolution

of these problems.

Chairmen:

Dara W. Childs and

John M. Vance

Turbomachinery Laboratories

Texas A&M University

Robert C. Hendrlcks

NASA Lewis Research Center
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A HISTORY OF DEVELOPMENT IN ROTORDYNAMICS -

A MANUFACTURER'S PERSPECTIVE

David E. Shemeld

Dresser Industries, Inc.

Olean, New York 14760

The subject of rotordynamics and instability problems in high performance
turbomachinery has been a topic of considerable industry discussion and debate
over the last 15 or so years.

This paper reviews an original equipment manufacturer's history of development

of concepts and equipment as applicable to multistage centrifugal compressors.

The variety of industry user compression requirements and resultant problem-

atical situations tends to confound many of the theories and analytical techniques

set forth. The experiences and examples described herein support the conclusion

that the successful addressing of potential rotordynamics problems is best served

by a fundamental knowledge of the specific equipment. This in addition to having

the appropriate analytical tools. Also, that the final proof is in the doing.

INTRODUCTION

While the subject of "rotordynamics" encompasses a broad range of lateral and
torsional considerations, this presentation briefly reviews the manufacturer's
efforts to correlate analytical procedures with machine operation including:

- verification of indicated critical speed with analytical results

- the influence of various components on the rotating system's behavior

- aerodynamic influences.

The review continues with the development of rotating system components and
their successful application in a variety of services, and compares the results
of this development and experience with a previously published graphical represen-
tation. (ref. I, 2).

NOMENCLATURE

Values are given in both Sl and U.S. Customary Units.
calculations were made in U.S. Customary Units.

BHP
cfm

= power, brakehorsepower

= flow, cubic feet per minute

The measurements and



Hz

in.

KPa
kg/m3
kW
I bm/ft3
m3/hr
mil
mm
N
NC

NC!
psl
r/min

Mm

= frequency, hertz
= length, inches
= pressure, kilopascal
= density, kilogram per cubic meter
= power, kilowatt
= density, pound-mass per cubic foot
= flow, cubic meter per hour
= vibration, 0.001 inch
= length, millimeter
= running speed
= critical speed
= first bending critical speed
= pressure, pound-force per square inch
= speed, revolutions per minute
= vibration amplitude, micrometer

ROTORDYNAMICS

Phase One Testing

In the late 1960's a test rig (fig. I) was established to monitor seal and

rotordynamic behavior.

Reviewing the test rig (fig. 2), the casing was a standard multistage centrifu-
gal compressor frame with pressure capability of 34,500 KPa (5000 psi), and speed
capability to 14,000 r/min.

The casing was equipped with a rotor consisting of dummy weights installed on a
shaft to simulate impellers. The test vehicle configuration allowed installation of
a variety of bearing and seal combinations, variable rotor geometry and application
of unbalance weights.

In this test rig, rotordynamic influences were monitored through a range of
pressures without the influence of aerodynamic effects which normally result from
gas compression.

Initial testing evaluated a rotating system configuration representative of
components in use at the time. The configuration consisted of a rotor with a
1600 mm (63 in.) bearing span having ten weights installed simulating impellers.
The bearings were tilting pad type having five shoes. The seals were standard ring
type oil film seals (fig. 7) of low profile geometry (fig. 8).

Bearing vibration results for a speed range through 14,000 r/min are shown on
figure 3. Rotor midspan vibration is shown on figure 4. The data definitions for
figures 3 and 4 are made in Table I.

Testing was done using two case (and therefore seal) pressures [1030 KPa
(150 psi) and 6900 KPa (I000 psi)] and with a "tight", 0.127 mm (0.005 in.) and
"loose", 0.241 mm (0.0095 in.) bearing clearance.

It was evident from reviewing the characteristics of peak locations (fig. 3,
curves A vs. B, and C vs. D), and the vibration discontinuity evidenced in figure 3,
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curve C that both bearing and seal characteristics influence rotordynamic behavior.

Figures 3 and 4 also presented difficulties in data interpretation. For exam-
ple, in figure 3, note the low [less than 12.7_vm (0.5 mil)] vibration level in the
first critical speed range and the difficulty in pinpointing these critical speeds.
Also, in figure 4, note the low speed amplitude being an appreciable portion of the
full speed amplitude as well as the initial decrease in amplitude as speed increased.
Phasedata recorded was erratic and inconclusive.

These characteristics suggested a form of runout and the runout to be out of
phase with the unbalance. Since rotor instability, as experienced, was associated
with vibration at the first bending mode, correct modeling of the parameters influ-
encing the first critical speed was important.

Phase TwoTesting

From the foregoing review of data, it was determined that more detailed testing
was necessary to overcomethe difficulties of data interpretation. Testing during
this phase was set up to:

- operate without seals thereby eliminating the apparent seal effects on
critical speed;

- intentionally unbalance the rotor at midspan to give a clearer indication of
critical speed;

- run with "tiqht" and "loose" clearance bearings.

This phase of testing would be used to verify the analytical capability to
predict rotor response using available bearing and unbalance response programs.

Figures 5A and 5B compare analytical and test results for bearing and midspan
vibration vs. speed data for a "tight," 0.102 mm(0.004 in.) clearance bearing.

There is good correlation between the test (solid line) and calculated (dotted
line) first critical frequency.

Figures 6A and 6B compareanalytical and test results for bearing and midspan
vibration respectively for a'qoose_'0.241mm(0.0095 in.) clearance bearing. Note
in this data, there are sometest coupling unbalance effects and second bending
critical speed effects at higher speeds. The calculated values were analyzed with
unbalance modeled to compare to only the first critical speed.

The amplitude ratio data of figures 5A and 5B, and 6A and 6B (summarized in
Table 2) emphasize the ever present requirement for compromise in compressor com-
ponent design/application.

FromTable 2, while tight bearing provides a lower indicated vibration at run-
ning speed, which may be considered advantageous to the user, the ratios at critical
speed indicate a more sensitive situation than the loose bearing.

The impact of subtle differences on the design of critical componentsand the
impact on compressor operation must be a prime consideration in revamping or replac-
ing parts.



PhaseThree Testing

Having recognized from the first phase of testing that oil film seals had a
demonstrated effect on rotordynamics, the third phase of testing was established to
evaluate various seal configurations and establish a basis for analytical predict-
ability.

Figure 7 showsa typical ring type oil film seal in cross-section. Due to the
axial load associated with the high pressure drop across its unbalance area, the
outer ring is the componentwhich influences rotordynamics.

Figure 8 showsseveral variations in outer ring geometry that result in dif-
ferent seal effects at a given pressure differential.

Testing wasconducted with these different, albeit somewhatconventional, seal
designs at varying seal pressures and varying levels of rotor unbalance. Test
results indicated an unsettling effect of unbalance at low axial loads and indicated
highly loaded seals of this geometry to be unpredictable.

Data ?rom tests of these various geometries also provided a plausible explana-
tion for the vibration discontinuity observed in figures 3 and 4. Since predicta-
bility is a requirement for reliability, it was determined that a new approach to
seal geometry must be taken.

Several seal designs were conceived and tested. The tilt pad seal (fig. 9)
evolved as the solution to the problem of predictability of seal effects while
eliminating the propensity for oil whirl which had emergedas a problem during
testing of other seal geometries.

Verification of the tilt pad seal geometry included testing various oil film
clearances enabling this parameter, as well as axial load and unbalance to be in-
cluded in the analysis as an accurate representation of the rotordynamic system.
Uponverification, the tilt pad seal was released to production units and has been
providing reliable service for over 12 years.

With the foregoing, the first three phases of the test program were complete.
During these phases, over 200 tests were run to evaluate rotordynamic parameters.

ROTORINSTABILITY

With this progress in analytical capability and machinery experience, the in-
evitable result was to extend the equipment to higher heads, higher case lift, and
higher pressures by design innovations such as back-to-back construction, variable
stage spacing, inboard thrust bearings, and high pressure seals. Along the way in
this evolution, a vibration problem defined as rotor instability was encountered.
The rotor instability was evidenced by a pulsating vibration at subsynchronous fre-
quency, the amplitude of which would increase, resulting in rotor interference with
static parts. It was determined that the vibration was aerodynamically excited and
_,,= ,,=_u=,,_j co_nc with the rotor's first bending critical speed, u_U

This manufacturer's exposure to the subsynchronous vibration problem first
occurred in the early 1970's. The problem surfaced in widespread geographical
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locations and encompassedboth synthesis gas and natural gas compressors in applica-
tions at moderate and higher pressures. The approach taken was not to abandonthe
extended capability and advantages inherent in the design philosophy, but to improve
understanding and solve the problem through incorporation of design advances. It
was recognized that to accomplish this would require a test vehicle which had experi-
enced a demonstrated, rotor instability in order to verify or evaluate design
modifications.

Instability Testing

A compressor that had experienced serious subsynchronous vibration was set up
in the test facility (fig. I0) for full pressure, full power operation. A compari-
son of design and test capability conditions are shown in Table 3.

A series of 30 tests were run on a helium/nitrogen mixture through a range of
flows, pressures and speeds.

The first series of tests (one through six) were baseline runs using the com-
pressor as originally built, including five shoe, tilt pad bearings and standard
ring type seals. These tests verified the field experience could be duplicated by
the shop test. An example of the data which shows the impact of the subsynchronous
componenton midspan vibration is shownin figure II. Note the Y-axis of this
oscilloscope picture is vibration at 2.54_wm/Division (0. I mil/Division) and the
X-axis represents time, in this case, ten'seconds. This data represents the maxi-
mumspeed (9000 r/min) that could be achieved prior to completely unstable operation.

The remainder of the testing applied manyof the bearing and seal component
configurations to the "real condition" operating environment in combinations which
had been shownto be successful in prior testing without aerodynamic influence, and
which had already shownpromising results when installed in field problem units. In
addition, this test program examined a variety of modifications to internal hard-
ware believed to influence the aerodynamic forces on the rotor system, as well as
investigation of friction effects of couplings and shrunk on parts.

Figure 12 is indicative of the results of this testing, again showing midspan
vibration and data at 2.54_m/Division. The configuration included in this data
included:

- damper, tilt pad bearings, five shoe;
- tilt pad seals;
- aerodynamic adjustments to stationary parts.

The success of these programs is represented by the application of these con-
cepts, analytical techniques and componentsto a quantity and variety of user
compressor requirements. It is important to note these componentsand concepts have
been applied successfully to multistage compression equipment of both back-to-back,
as well as straight-through rotor arrangements.

Recent History

With the addition of hydrocarbon gas capability to the existing inert gas full
load, full pressure test facilities in LeHavre, France, and Olean, NewYork, the
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manufacturer has expandedcapability for evaluating rotordynamics/stability behavior
in "real-life" conditions.

In 1985, the opportunity was presented to evaluate a compressor's performance
under ASMEPowerTest Code I0, Class 1 conditions. The hydrocarbon gas blend was to
match a unique "natural gas" injection application and at the same time, match and
verify other aspects of the gas properties and gas behavior.

The compressor configuration was back-to-back, through-flow, without intercool-
ing, having a total of six impellers and fitted with squeeze-film, tilt pad bearings,
tilt pad seals, and the special aerodynamic division wall design; all of which had
been proven successful on prior development tests and in long-term field operation.
Additionally, all internal labyrinths were of conventional design. Bearing span,
as well as other geometric parameters, were well within prior experience. Unique
to this application was the hydrocarbon 35 mol weight gas being compressed to the
31,030 KPa (4500 psi) design, 33,100 KPa (4800 psi) maximumpressure.

During the full pressure, hydrocarbon performance test, a subsynchronous vibra-
tion componentappeared and increased in intensity as pressure was increased going
back toward surge on the I00 percent speed line. The subsynchronous vibration data
during this test, although at very low levels [peaks to 7.6144m,(0.3 mil)], had a
pulsation characteristic that would be of potential concern to the operator. It
should be noted that later inspection of compressor internals showedabsolutely no
distress to labyrinth seals or any other internal (or external) components that, if
existed, would be indicative of high midspan excursions. Figure 13, Test A, shows
representative data at the highest pressure tested during performance testing. The
data is bearing vibration shown on a time-sprectrum plot. Table 4, ColumnA shows
basic test conditions at that point. Note for reference, the highest vibration
amplitude shownon figure 13 is 12.7jC(m(0.5 mil) (Test C, 147 Hz).

On this project, two duplicate compressors (units I and II) were being supplied.
While the compressor being discussed here (unit I) was being tested on hydrocarbon
gas, the sister unit (unit II) was being tested at another facility on an inert gas
and had not exhibited the subsynchronous component during its preliminary testing.
Based on this, it was decided to run unit I on nitrogen at the highest pressures
that could be achieved on that gas (similar to the conditions already experienced
by unit II). This test is designated test B on figure 13 and Table 4. The results
confirmed units I and If, under these conditions, had very similar operating char-
acteristics free of subsynchronousvibration. This tended to lead the investigation
to a detailed review of the compressor design as opposed to suspecting a random
type problem such as might have occurred during assembly. This test also confirmed
the need to run final verification tests on a gas blend closely duplicating field
gas conditions.

Close inspection during disassembly confirmed correct parts assembly. However,
scrutiny of the parts and manufacturing drawings revealed the stationary, flow-path
componentshad not received someof the detailed design features that had been
applied to other compressors in operation. These stationary componentswere re-
machined to conform to prior experience.

Test c (fig. !3 and Table 4) was the final verification test at maximumre-
quired pressure and speed. This test verified the adjustments madeto the aerody-
namic flow path stationary componentsbrought the subsynchronous componentto a low
amplitude [peaks to 1.9_(m, (0.075 mil)], stable condition.



RESULTS

The results of these, and similar test programs, are reflected by the experi-
ence in a wide variety of application circumstances. This wide variety of applica-
tions, it should be added, reinforces the analytic approach through incorporation of
experience data into the evolution of the analytical process.

Based on knowledgegained from these research efforts, and application experi-
ences, the manufacturer is hesitant to embraceas absolute manyof the analytical
techniques and empirical criteria presently published or available.

Onesuch empirical criterion is represented by figure 14 (ref. 2). This repre-
sentation plots points based on a compressor's flexibility ratio and average gas
density in operation, with flexibility ratio defined as compressor maximumcontinu-
ous speed divided by the first critical speed on stiff supports. These points are
then comparedto the "worst case" threshold line with the area above the line indi-
cated as "unstable region" and the area below the line indicated as "safe region".
According to the author (ref. 2), "The 'worst case' line given should be a useful
rule-of-thumb for indicating a threshold-of-concern for subsynchronous instability
in similar industrial centrifugal compressors."

To assist in putting such a chart into perspective, the parameters of figure
14, including the "worst case" line, have been used as a base for plotting a por-
tion of the manufacturer's experience without showing duplicate units (fig. 15).

On figure 15, units numbered1 through 46, represent a wide range of applica-
tions including natural gas (21 units), synthesis gas (12 units), as well as C02,
air injection and mixed hydrocarbon service. Also represented is a wide range of
service pressures from approximately 6900 KPa (I000 psi) through 72,415 KPa
(10,500 psi). The period covered is 1969 through 1983. (Since this representa_ nn
is considered to be only an illustrative tool, later experience has not been adGad.)
As noted, the unit numbersenclosed in squares or boxes represent those units which
were full load/full pressure tested prior to shipment. All other units were shipped
having received, from a mechanical standpoint, only API-617 testing. For further
reference, locations on this plot of test points A, B, and C from fig. 13 are shown.

CONCLUSION

The subject of rotordynamics and stability is a complex, technical issue made
more complex by the constantly changing users' compression requirements typical of
the multistage compressor industry. This history of development and testing serves
to demonstrate that causes of subsynchronousexcitations are not particular to any
one area of compressor design; i.e., bearings, main seals, internal labyrinths,
stationary components, impeller inlets, exits, etc. Nor is the phenomenonunique
to a given configuration. Therefore, the solutions to these problems cannot be
addressed by close examination of a singular element or componentof the compressor
assembly.

The described development testing and operating experience has allowed this
manufacturer to establish the analytical processes by continual data feedback, as
well as to conceive and develop bearing and seal components, and aerodynamic



concepts as necessary to address solutions to rotordynamics/stability problems.

Someindustry publications (ref.'s I, 2, 3, 4, 5, 6, 7, 8) covering a span from
1976 through to as recently as 1984, would imply to the reader that when problems
arise, solutions requiring major geometry changes to compressor shafting, cases
and stationary componentsare to be considered cost-effective solutions based on
current state-of-the-art of theory and application. "Cost-effective" has been
described,at least as associated with one reported incident, as between 3 million
(ref. 2) to 4 million (ref. 3) PoundSterling.

To date, problems addressed by this manufacturer have not required the radical
solutions implied as necessary by the aforementioned references. More typical of
the manufacturer's experience is the Arun, 49,060 KPa (7115 psi) injection experi-
ence (ref. 9). Despite such successes, it has been recognized that additional
development is necessary. To this end, the test vehicle (fig. I0) has been
re-established in the test facility to enable identification and quantification
of the mechanismsleading to rotor instability.
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TABLE 1

Curve Definitions for Figures 3 and 4

Case (Seal) Pressure Bearing Clearance
KPa psi mm in.

A 6900 1000 O. 127 O. 005
B 1030 150 0.127 0.005
C 6900 1000 O. 241 O. 0095
D 1030 150 0.241 0.0095

TABLE 2

Vibration Ratio Comparisons
(Based on Test Data Figures 5 and 6)

I. Midspan to bearing vibration ratio at first critical speed (NCI):

tight clearance - 5.20
loose clearance - 1.70

2. Tight to loose bearing clearance vibration ratio:

a. midspan vibration
at NC1 - 5.20
at 12000 r/min - 0.56

b. bearing vibration
at NCl - 1.70
at 12000 r/min - 0.14



TABLE 3

Operating Conditions

Field

mol wgt.
Flow, m3/hr

ft3/min
Inlet pressure, KPa

psi
Discharge pressure, KPa

psi
Power, KW

bhp
Speed, r/min
Bearing span, mm

in.
Number of impellers

II .6
6,540
3,850
1,720

250
10,342

1,500
10,146
13,600
10,436

1,753
69
II

Test

II .0

6,610
3,890
1,585

230
10,690

1,550
10,205
13,680
11,000

1,753
69
II

TABLE 4

Hydrocarbon Test Conditions

Test A B C

Gas

Mol weight
Inlet pressure, KPa

psi
Discharge pressure,

Speed, r/min
Power, KW

BHP

KPa
psi

H.C. N2
34.6 28
14,135 19,300

2,050 2,800
32,910 30,340

4,773 4,400
8,305 8,800
5,425 3,540
7,273 4,746

HoCo

35.6
14,135

2,050
33,100

4,800
8,800

10,986
14,726

I0
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AN EXAMINATION OF GAS COMPRESSOR STABILITY AND ROTATING STALL

Azlz A. Fozl

Solar Turbines Incorporated

San Diego, California 92138

The principal sources of vibration related reliability problems in high

pressure centrifugal gas compressors are the re-excitation of the first

critical speed or Resonant Subsynchronous Vibration (RSSV), and the forced

vibration due to rotating stall in the vaneless diffusers downstream of the

impellers. An example of such field problems is documented in reference 1.

This paper describes the results of a test program at the author's

company, initiated in 1983 and completed during 1985, that studied the RSSV
threshold and the rotating stall phenomenon in a high pressure gas compressor.

SYMBOLS

Alpha 3

Values are given in both SI and English units. The measurements and

calculations were made in English units.

Averaged calculated one-dimensional flow angle into the diffuser

measured in degrees from tangential

b3 Inlet width of diffuser

N Speed

Ncr Rigid Bearing First Critical Speed

R3 Inlet radius of diffuser

RSSV Resonant Subsynchronous Vibration or re-excitation of the first

critical speed (translatory whirl). Stability threshold means
conditions at which the RSSV becomes present.

BACKGROUND

The purpose of this test program was to study subsynchronous vibration

problems in an offshore gas compressor installation. The plan was to assemble

an identical gas compressor and run it at the same pressure and speed
conditions in order to create similar instability mechanisms that could be

studied and overcome by hardware modifications at the factory.
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AREAS OF STUDY

Tests conducted focused on:

I. Stability threshold and how it is influenced by modifications in
balance piston hardware.

2. Presence of rotating stall in parallel-wall vaneless diffusers (as a

forcing function) and how the development of rotating stall is
influenced by diffuser inlet flow angle (ref. 2).

Justification for focusing the test on the balance piston and vaneless
diffusers is provided in this section.

The frequency of the subsynchronous vibration matched the first critical

speed of the rotor. This indicated a self-excited mechanism. The compressor

was designed to operate at 3,100 kPa ab (450 psia) suction and 12,410 kPa ab

(1800 psia) discharge pressure. In practice, the compressor was limited to
11,030 kPa ab (1600 psia). Operation above 11,030 kPa ab (1600 psia) was

possible but the subsynchronous vibration would cause bearing damage

(clearance increase) within a few days.

On account of its sensitivity to discharge pressure, the cause of this

instability was thought to be aerodynamic cross-coupling rather than

mechanical, such as the influence of oil seals. In fact, the oil seals were

not suspect since the seal oil system was referenced to suction pressure and

was not a function of the discharge pressure.

Earlier tests conducted on a similar gas compressor at the author's

company in 1974 indicated that stability threshold can be increased by
relatively simple modifications to the balance piston flow field. The

analytical basis for this work was partially drawn from reference 3. Given

this background, the test focused on the balance piston as the major source of

excitation and its modification to extend the stability limits.

The next step was to identify the cause of vibration occurring at

frequencies lower than the RSSV component (around 65 Hz or about 20% running

speed) that had become noticeable during tests. The low frequencies involved

indicated an aerodynamic forcing function. It is well known that incipient

compressor surge is signaled by occurrence of very low frequency vibration
(less than 10 Hz is typical). As a matter of fact, during tests under

aerodynamic load such as ASME PTC-IO tests, the proximity to surge is

announced by the appearance of these low frequencies. It was thus concluded to

search for an aerodynamic forcing function as the cause of such low frequency

vibration. Rotating stall in the parallel wall vaneless diffusers was the

prime candidate. Figure I is a typical test spectrum where all these different
frequencies are excited.

The test program was divided into two portions. First, the effect of
balance piston flow field on stability was studied. Then, the pressure field

at the inlet of the last stage diffuser was monitored for rotating stall.
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TEST PROGRAM DETAILS

Facility

Tests were conducted at the gas compressor closed loop facility of the

author's company. This facility in San Diego utilizes a 3200 kW (4300 hp)

Centaur gas turbine driver with a step-up gearbox to achieve 24,500 rpm

maximum output speed. The gases used were nitrogen or carbon dioxide.

The facility piping is limited to 10,340 kPa gauge (1500 psig) on suction

and 31,025 kPa gauge (4500 psig) on discharge. Shell and tube heat exchangers

are used to cool the compressed gas.

Compressor

Figure 2 shows a cross section of the gas compressor used for the test.

This compressor is capable of 27,580 kPa ab (4000 psia) discharge pressure.

The rotor construction features the impellers and suction and discharge stub

shafts held together as a monolithic piece by a center tiebolt stretched to

provide 311,375 Newtons (70,000 pounds) compressive force. The rotor

configuration is straight-through, non-intercooled, with constant impeller hub
and shroud labyrinth seal diameter.

The undamped critical speed map (fig. 3) provides rotor-dynamic data. The

rigid bearing first critical speed was slightly above 10,000 rpm compared to a

typical running speed range of 18,000-23,000 rpm. The rotor weight was 55 kg

(122 pounds). Nominal bearing data follow:
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Figure 2. Cross Section of Test Gas Compressor

• Shaft Diameter

• Bearing Clearance Assembled

• Bearing Preload
• Pivot Offset

• Load Position

• Length/Diameter
• Number of Pads

• Load on Each Bearing

• Bearing Span

44.5 mm (1.75 in.)

0.0686 mm (0.0027 in.) - Diametral
0.7
0.6

Between Pivots
0.25

5

271 Newtons (61 Ib)
864 mm (34 in.)
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Figure 3. Undamped Critical Speed Map

All the labyrinths used were straight-through with the teeth on the

rotating elements. The balance piston and impeller shroud seals had a 127 mm

(5 in.) diameter. The hub seals had a 94 mm (3.7 in.) diameter. Shaft seals

were conventional oil film-type floating rings with anti-rotation pins.

Test Configurations for Stability Threshold

Three balance piston configurations were tested:

I - The Baseline Case - The balance piston flow was taken from the

last stage impeller. This is considered the conventional approach (See

fig. 4.)

II - The 'P2 Inject' - This configuration is the same as shown in the

cross section. The balance piston flow is derived from the discharge

cavity and the gas is injected at the third labyrinth tooth. The flow

is established because of the dynamic pressure recovery through the

last stage diffuser. A portion of injected gas will recirculate back

into the last stage diffuser. See figure 5 for detail.

The purpose of 'P2 inject' modification is to eliminate the inlet

swirl into the balance piston which is believed to be a strong source

of aerodynamic cross coupling forces. Reference 4 is cited here as one

of the recent sources of analytical justification for this phenomenon.
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Figure 4. Conventional Balance Piston Flow

/

40-8b (

BALANCE PISTON
\ LEAKAGE FLOW

0

Figure 5. Balance Piston Flow with P2-1nject Modification

Some thought was given to direct the 'P2 inject _ flow against the

rotation to delay the re-establishment of tangential velocity field in
the balance piston due to viscous forces. However, the available

anti-swirl gas velocity at the injection point appeared to be
insufficient to derive any significant results.

III - The 'Hub Seal' - This case was a simplified approach where the

balance piston flow is derived from the discharge collector, the last

impeller being isolated with a seal at the hub. Thus, the impeller

induced swirl is avoided. Figure 6 shows the mechanical details.

24



!
_\\_ P2_

l/BALANCE PISTON

LEAKAGE FLOW

Figure 6. Balance Piston Flow with Hub Seal Modification

Test Configurations for Rotating Stall

Tests were conducted with two diffusers having inlet width-to-radius
ratios (b3/R3) of 0.029 and 0.043 respectively, and results were compared to

the criteria proposed in refs. 2 and 5. Figure 7 gives dimensional data for

the two vaneless diffusers tested. Note that the only difference between the

two geometries is in the inlet width (b3).

Normal
Diffuser Flow

w--

,I0-168A

=-q

b3--_

b2 fl

(b3)TEST #1 = 0.170 in.
(b3)TEST #2 = 0.115 in.
R3 = 3.90 in.
b2 = 0.135 in.
R2 = 3.85 in.

Figure 7. Vaneless Diffuser Geometry

Tests consisted of operating at any constant speed and traversing the

compressor operating map from choke towards surge. The diffuser inlet flow

angle (Alpha 3) was calculated in real time and displayed. Formation of stall
cells was monitored by pressure transducers and data points were recorded as

stall cells developed and changed in shape.
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Instrumentation

The instrumentation used included single- and two-channel FFT spectrum
analyzers, a 14-channel tape recorder, and speed tracking balance analyzer.
The stall cells were detected by quartz crystal dynamic pressure transducers
connected to charge amplifiers displayed on dual trace camera oscilloscopes.

Although one transducer is sufficient to detect the presence of pressure
fluctuations (stall), with two transducers the number of stall cells can be
calculated based on the observed phase difference between the two signals. See
reference 5 for details. Figure 8 shows a detail of the transducer
installation.

Figure 8. Pressure Transducer Installation at Diffuser Inlet

Oscilloscope traces presented later are numbered I and 2 in the direction

of rotation to show phase. The typical amplification factor was a 690 kPa ab

(100 psia) dynamic signal per volt, or as indicated on the pictures. The

horizontal (milliseconds) and vertical (volts) scales are annotated on these
pictures for reference.

The time scale selected favored detection of low frequency signals in the
area of 10 to 100 Hz. With this scale, the blade passing frequency at about
6000 Hz is compressed on the oscilloscope trace and is not system noise.

TEST RESULTS

Stability tests concentrated on establishing the threshold at which the RSSV
component appeared on the spectrum of shaft vibration at either bearing
location. The threshold was established in terms of operating pressure and
speed conditions and compared to the criteria proposed in reference 6, namely
._ _ _.... _, ...... n .......... as Delta P.
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A peak-to-peak shaft vibration amplitude value of 1.27 to 2.54 microns

(0.05 to 0.1 mils) was selected as the threshold limit. The results indicated

that the P2-inject (Case II) provides better stability than the hub seal (Case

Ill), which itself is an improvement over the baseline (Case I) (figs. 9 and

10).
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Figure 9. Stability Threshold of Base Case (Case I)

Case I - The stability line for Case I shows the limit where the RSSV

component grows to about 1.27 to 2.54 microns (0.05 to 0.1 mils)

peak-to-peak. This line is viewed as analogous to a P2 Delta P range of

I to 2.5 x E6 (psia square) (fig. 11).

Case II - The P2 inject configuration was stable throughout the
tested region. Temperature limits of the facility were reached in every

case before any evidence of RSSV was observable. Test facility

vibration analyzers were set to high sensitivity to detect the onset of

RSSV activity; however, none was detected.

Case III I In figure 10, the hub seal stability limit shows

considerable improvement over Case I, comparable to a P2 Delta P range
of 4 to 7 x E6. The elimination of impeller swirl at the inlet of the

balance piston is thought to be responsible for the improvement.
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Two observations were made during these tests:

1. The stability threshold for each configuration was defined as a

function of suction pressure and pressure ratio, and this threshold was

not dependent on the staging selection or speed. It was found that when

running on natural gas (S.G. = 0.75) the threshold was the same as when

running on nitrogen, although at different speeds. Likewise, two

compressors running on the same gas but staged differently (ten stages

versus seven stages) gave identical results regardless of speed.

(Typical variation: 18,000 versus 21,000 rpm.) This was also

noticeable when examining the threshold lines that were obtained in two

parts, low suction pressure/high ratio running on carbon dioxide and

high suction pressure/low ratio running on nitrogen. The threshold was

a continuous line. This led to the conclusion that the speed was not as

strong a stability indicator as expected.

2. The RSSV frequency showed dependence on the density of the gas, as

evidenced implicitly in the following table:

P1 kPa ab (psia) Ratio P2 kPa ab (psia) Ncr (Hz) Gas

1 089

1 765

2 068

3 585

4 591
4 964

5 633

6 426

(158)
(256)
(3o0)
(52o)
(666)
(720)
(817)
(932)

5.8
52
48
32
30
28
25
22

6 323 (917)
9 177 (1,331)
9 929 (1,440)

11 473 (1,664)
13.776 (1,998)
13900 (2,016)
14079 (2,042)
14 134 (2,050)

132.5 C02

135.0 C02
145.0 C02

150.0 N2

152.0 N2

155.0 N2

157.5 N2

160.0 N2

This dependency suggests that labyrinth seals have direct stiffness
terms that tend to restore the deflection of the shaft, thus, raising

the first critical speed. As the density of the compressed gas

increases, the restoring forces become large.

ROTATING STALL

Test Results

The tests showed that the low frequency vibrations on the shaft were

indeed induced by rotating stall. Figure 12 shows a case where one stall cell

at 65 Hz was observed. The transducer separation in this case was 75 degrees.

The 300-Hz signal corresponds to shaft rotation at 18,000 rpm, while the

jitter corresponds to blade passing frequency at 18 times running speed.

The test verified the criterion for the onset of rotating stall as being

the b3/R3 ratio versus the diffuser gas inlet angle (Alpha 3), as described in

references 2 and 5. See figure 13.
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Figure 13. Rotating S t a l l  C r i t e r i o n ,  b3/R3 versus Alpha 3 

F i r s t ,  the r a t i o  of b3/R3 of 0.043 was t e s t e d .  Figures 14, 15, and 16 show 
the  development of r o t a t i n g  s t a l l  a s  t h e  Alpha 3 angle was reduced from 9.2 
degrees  t o  7 and then t o  5.6 degrees  [P2 i s  a t  5068 kPa ab (735 p s i a ) ] .  The 
t h r e s h o l d  value was obtained a t  8 .25  degrees ,  corresponding t o  t h e  
o s c i l l o s c o p e  t r a c e  in  f i g .  17.  This  f i g u r e  shows t h e  unsteady p res su re  f i e l d  
a s  s t a l l  develops and d i s s i p a t e s .  

was obtained.  The c a l c u l a t i o n  procedure f o r  alpha ang le s  was based on one- 
dimensional flow f i e l d  a n a l y s i s .  The Reynolds number c o r r e c t i o n  was not 
considered in view of t h e  small b3/R3 values  of t h e s e  t e s t s .  

For a d i f f u s e r  b3/R3 r a t i o  of 0.029, a c r i t i c a l  alpha angle  of 7.5 degrees  
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Figure 14. Steady State Pressure Field Prior to Rotating Stall 

Figure 15.  Rotating Stall, Two Cells at 56 Hz Rotational Speed 

This correlation between low frequency shaft vibration and rotating stall 
helped interpret results of another investigation. Low frequency vibration was 
noted when operating a larger frame gas compressor on a particular area o f  its 
operating map close to surge. However, careful operation showed that the unit 
was not at surge and that the amplitude of vibration would actually decrease 
as flow was lowered to the surge line. (See the performance map in  figure 18). 

The impeller diameter of this compressor was 305 mm (12 in.) with a b3/R3 
ratio of 0.0815. The last stage diffuser flow angles were calculated and drawn 
on the performance map. The appearance of vibration closely matched the onset 
of rotating stall predicted at an Alpha 3 of 11.3 degrees. It is interesting 
to note the high amplitude of vibration at 8 Hz (single stall cell) compared 
to 16 Hz (two cells) which apparently indicates the cancellation effect of an 
even number o f  stall cells. 
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F i g u r e  16. R o t a t i n g  S t a l l  nea r  Surge 

2 

1 

F i g u r e  17. T h r e s h o l d  Where S t a l l  C e l l  Appears and D i s s i p a t e s  

CONCLUSION AND COMMENTS 

The balance p i s t o n  i s  a s t r o n g  e x c i t a t i o n  source  o f  i n s t a b i l i t y ,  and 
m o d i f i c a t i o n s  t o  t h e  i n l e t  s w i r l  have g r e a t  e f f e c t  i n  e x t e n d i n g  t h e  o p e r a t i n g  
l i m i t s  o f  t h e  gas compressor.  Fo r  any g i v e n  compressor c o n f i g u r a t i o n ,  t h e  
s t a b i l i t y  l i m i t  may be d e f i n e d  i n  te rms o f  s u c t i o n  p r e s s u r e  v e r s u s  p r e s s u r e  
r a t i o .  The P2 D e l t a  P as  a f u n c t i o n  o f  t h e  c r i t i c a l  speed r a t i o  N/Ncr i s  a 
u s e f u l  i n d e x  b u t  it over-emphasizes t h e  speed s e n s i t i v i t y .  L a s t l y ,  t h e  
r o t a t i n g  s t a l l  c r i t e r i o n  o f  A lpha  3 ve rsus  b3/R3 was c o n f i r m e d .  
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SUBSYNCHRONOUS VIBRATION OF MULTISTAGE CENTRIFUGAL

COMPRESSORS FORCED BY ROTATING STALL

J.W. Fulton

Exxon Research and Engineering Co.

Florham Park, New Jersey 07932

A multistage centrifugal compressor, in natural gas re-injection

service on an offshore petroleum production platform, experienced

subsynchronous vibrations which caused excessive bearing wear. Field performance

testing correlated the subsynchronous amplitude with the discharge flow

coefficient, demonstrating the excitation to be aerodynamic. Adding two

impellers allowed an increase in the diffuser flow angle (with respect to

tangential) to meet the diffuser stability criteria based on factory and field

tests correlated using the theory of Senoo (for rotating stall in a vaneless

diffuser, Ref. i). This modification eliminated all significant subsynchronous

vibrations in field service, thus confirming the correctness of the solution.

Other possible sources of aerodynamically induced vibrations were considered,

but the judgment that those are unlikely has been confirmed by subsequent

experience with other similar compressors.

INTRODUCTION

This paper describes the joint efforts that a manufacturer and a user

made to solve a vibration problem. The vibration was caused by a rotating

aerodynamic stall, which created a forced vibration of the rotor resulting in

reduced bearing life. The compressor operates at a high pressure typical of

natural gas re-injection service. The primary objective of this paper is to

provide sufficient engineering information to be useful to others faced with

similar problems, in the field, and during design. This objective includes

relating the observed phenomena with theories of rotating stall. A secondary

objective is to caution purchasers and users of high pressure centrifugal

compressors about the potential consequences of rotating stall.

The paper is written from the equipment user's point of view, however

it contains technical input from the manufacturer. Except as noted, the

calculations of internal flow angles were made by Leon Sapiro of Solar Turbines

Inc., who also contributed many valuable insights, and played a major role in

solving this problem. Research by the manufacturer is reported in another paper

presented at this workshop by Fozi (Ref. 2)

The main parts of the paper describe the following: the equipment, the

vibration and its consequences; the method of field diagnosis; the internal

analysis to identify the components responsible; the solution and results; an

evaluation of the possible causes, including information from a similar case;

and finally an empirical guideline indicating when serious vibrations will

  ceDil pAc, ]mJa 
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result from rotating stall.

SUBJECT COMPRESSOR RE-INJECTS NATURAL GAS

The problem occurred on the high pressure casings of seven compressor

trains used on four oil production platforms located in the South China Sea.

Three of the platforms have two trains while the fourth has a single train. The

manifestations of the problem were the same on all high pressure casings. The

designs of three pairs of trains were similar. The fourth pair of trains were of

an earlier type design, which had 178 mm (7 inch) diameter impellers, instead of

the 190 mm (7.5 inch) impellers of all the rest. One train, of the newer design,

was chosen as a prototype to concentrate efforts toward a solution.

Figure i shows the rated conditions of the chosen train. Natural gas,

separated from the crude oil produced, enters the low pressure casing at 2070

kPa (300 PSIA). The high pressure casing takes suction at the interstage

pressure of 5850 kPa (860 PSIA) and discharges the gas at 14480 kPa (2100 PSIA),

to the re-injection wells.

CHARACTERISTICS OF THE VIBRATION

Figure 2 shows the vibration spectrum taken from the shaft proximity

probe mounted vertically at the discharge end bearing. The subsynchronous

vibration is typical of our case; 33 microns (1.288 mils) peak-to-peak at 27.5

Hertz. The 307 Hertz component is at running speed. All the spectra in this

paper, unless otherwise noted, use 16 averages, to give representative

amplitudes. The amplitude of the subsynchronous vibration fluctuates

appreciably.

The operating conditions for Figure 2 were practically at the rated

point of the high pressure casing; the speed 18420 RPM, the suction volume flow

470 cubic meters per hour (277 ACFM), and the suction and discharge pressures

6100 and 14600 kPa (885 and 2121 PSIA) respectively. The molecular weight was

21.4 averaged from several gas samples, compared to 24.0 rated.

The subsynchronous vibration frequency is about 9 percent of RPM,

which is typical of the aerodynamically forced type. Bonciani and his co-workers

(Ref. 3) provided some of the first descriptions of shaft vibrations in high

pressure compressors which were attributable to rotating stall. A comparison of

their spectra to Figure 2 showed that it was similar. They emphasized that

rotating stall caused a forced subsynchronous vibration as opposed to its being

a self-excited resonant subsynchronous vibration.

Figure 3 shows the vibration spectrum taken at the suction end bearing.

These data were collected concurrently with Figure 2. The suction end

subsynchronous vibration levels were less than 12 microns (0.5 mils) for all

operating conditions tested.
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The low pressure casing also showedtraces of subsynchronous vibration
at frequencies associated with "aero-forced" vibration. Figure 4, which uses a
logarithmic scale to make the small amplitude vibrations appear more
prominently, shows two such frequencies, one with an amplitude of 2 microns
(0.08 mil) at 25 Hertz, and another (not marked) next to it with a frequency of
55 Hertz. (The other subsynchronouspeak, marked 0.i mil at 145 Hertz is at a
frequency near the first lateral critical speed of the rotor and is probably a
"self-excited" vibration.) The subsynchronousvibration of the low pressure
casing was always small in amplitude.

CONSEQUENCES OF THE VIBRATION

The subsynchronous vibration was not limited to the 33 microns (1.288

mils) shown in Figure 2. As running time increased the vibration amplitude at

the discharge end bearing would increase to the 50 micron alarm level and on to

the 63 micron protective shutdown. Forced shutdowns resulted, requiring

discharge bearing replacement before starting up again.

To put the magnitude of the problem in proper perspective, it must be

pointed out that the subsynchronous vibration was sufficiently limited in

amplitude to allow commissioning and operation of the compressor without

incident, except for abnormal bearing wear requiring frequent bearing

replacement. From the equipment operator's viewpoint, the consequences of such a

non-resonant forced response are less severe than the resonant and self-excited

type of subsynchronous vibration, which can have a catastrophic consequence on

operability. (For instance see Ref. 4.)

Bearing Wore at Pivot Pins

Figure 5 shows the bearing wear pattern. The pivot pin, which supports

the pad in the carrier, wears into its mating surface in the back of the

bearing pad. The extent of the worn area matches the length of the pin. The

depth of the wear into the pad was typically 25 microns (i mil) on the most

severely worn pad, as found when the bearing was removed due to excessive

subsynchronous vibration. The overall diametral clearance typically increased to

approximately 4 mils at that time compared to the 2.7 mils maximum allowable

clearance for a new bearing.

Primarily as a result of the subsynchronous vibration causing bearing

wear, the median bearing life was I000 hours (with a minimum of 88 and a maximum

of 2200 hours) for all seven high pressure casings, during the year this problem

was under study. This impacted adversely on the availability of the compressor

trains and justified considerable effort for correction.

The increase in vibration due to bearing wear can be related to a

corresponding reduction in bearing stiffness and damping. The bearing would wear

to approximately 4 mils (before a bearing change was required), causing the

stiffness and damping of the bearings to decrease substantially. The reduced
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stiffness allowed the subsynchronous vibration amplitude to increase
correspondingly. The manufacturer has performed rotor response analyses which
show a 4.4 times increase in response sensitivity when the bearing clearance is
increased from 2 to 4 mils (diametral). This reduced stiffness allowed the
once-per-revolution componentto increase as similarly, but the effect is not so
pronoUncedhere because the ratio of increase is partially maskedin this case
by the presence of a spurious amplitude due to shaft imperfections adding to the
once-per-revolution component.

Problem Associated with the Discharge End of the High Pressure Casing

The bearing wear-out, due to the fretting of the tilting pads at the

pivot pins, occurred predominantly on the discharge end of the high pressure

casing. The subsynchronous vibration also occurred predominantly on the

discharge end, as can be seen by comparing Figures 2 and 3. A detailed

investigation, including metallurgical laboratory studies of the worn bearings,

did not reveal any other supportable cause of the pivot fretting. The suction

end pivots did not wear out prematurely.

The bearing life of the low pressure casing has not been a problem.

Although detailed records were not kept in the absence of any problem, at least

one of the low pressure compressors is still using its original bearings after

17000 hours of service. As the low subsynchronous vibration amplitudes of Figure

4 _re typical, the correlation of pivot wear with high subsynchronous vibration

amplitudes is thus complete.

Damage Criteria

Because the subsynchronous vibration occurred at low frequency, the

shaft vibration velocity, due to this component, was low (about 3.5 millimeters

per second, equal to 0.14 inch per second) compared to the 6.3 mm/s (0.25

in./sec.) maximum acceptable for a compressor in good condition. Therefore the

manufacturer initially believed that the subsynchronous vibration was not

harmful. The manufacturer placed a filter in the vibration monitor system of

one of the other compressors of similar design to suppress the subsynchronous

vibration signal. Since the compressor was no longer limited by the vibration

shutdown from running with high levels of subsynchronous vibration, the result

(due to bearing wear) was an increase in both the subsynchronous vibration and

the once per revolution vibration, which eventually caused excessive labyrinth
wear.

The API 617 limit on non-synchronous components of shaft displacement

amplitude (peak-to-peak) specifies that the subsynchronous vibration be less

than 4 microns (0.16 mils); the specification limits such components to i0

percent of the overall allowable vibration. The overall allowable vibration in

mils equals the square root of [12000 / maximum continuous RPM]. This limit is

safe, based on the good experience with the low pressure casings.
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Damage Mechanism Hypothesis

The mechanism of the bearing pivot-pin wear is believed to be caused by

the subsynchronous vibration breaking down the load-carrying oil film between

the pivot-pin and the back of the bearing pad. The subsynchronous vibration

tends to hold the the pad against its pivot, thus squeezing out the oil film,

while the once-per-revolution component causes the fretting motion. The cause

of the fretting is analogous to the wear that occurs on a reciprocating

compressor wrist pin having no load reversal.

FIELD DIAGNOSIS

In the field or in testing compressors purchased for a commercial

project, transducers for dynamic pressure or velocity usually can not be placed

inside the casing. Therefore, diagnosis of aerodynamically induced

subsynchronous vibration outside the research laboratory must depend on analysis

of commonly available data such as vibration or pressures, temperatures and

flows measured outside the casing flange boundaries.

Spectral Characteristics

Field diagnosis is simplified by the distinctive patterns observable in

the spectrum. In most cases reported in the literature, rotating stall in stator

components has occurred at 4 to 20 percent of RPM. With the spectral analyzer in

the real time mode, it can be seen that the component frequency is not locked on

to an exact fraction of the rotor speed, but fluctuates slightly, as does the

amplitude. In the present case, many distinct frequencies could be produced at

will by varying the flow slightly at constant speed. For instance, decreasing

the flow from 593 to 562 cubic meters per hour (349 to 331 ACFM) caused the 27.5

Hertz component to split into 12.5 and 40 Hertz components. This phenomena is

believed to be due to different numbers of stall cells forming in various

stages, but without transducers inside the casing, neither the exact number of
cells nor their location can be identified.

Correlation with Flow Coefficients

Once the spectra identified the nature of the problem, we took the

second step essential in diagnosis of an aerodynamic stall problem. An

aerodynamic performance test was made at full pressure, speed and gas density,

measuring the subsynchronous vibration at each point, so that the

subsynchronous vibration could be correlated with the performance. The good

correlation of subsynchronous vibration with the flow coefficient (proportional

to volume flow divided by RPM) showed that the vibration was aerodynamically
induced. Later, the results of this test were used to calculate the internal

flow angles occurring at the inception of the subsynchronous vibration.

The results of correlating subsynchronous vibration with the flow

coefficients from the field test are shown in Figures 6 and 7. Figure 6 shows
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that the subsynchronousvibration correlates very well with the discharge flow
coefficient (based on the discharge flange volume flow). Figure 7 shows that the
subsynchronous vibration correlates less well with the suction flow coefficient.
The two flow coefficients do not form a constant ratio to each other, because
the test was run at two different speeds, causing the volume ratio across the
compressor to vary at similar inlet flows. The result of this difference in
volume reductions can be seen in Figure 7, where the 17200 RPMdata (squares)
forms a distinctly different curve from the 18450RPMdata (circles). The better
correlation at the discharge end suggests that the suspected stall is in the
final stages instead of the initial stages.

The rated flow is indicated on the flow coefficient scale of Figures 6
and 7. It can be seen that the subsynchronous vibration, which is usually
associated with operation near the compressor surge line, begins in this case at
flows over thirty percent larger than rated (suction basis).

The theory that the final stages are responsible is supported by the
predominance of the subsynchronous vibration at the discharge end compared to
the suction end. Other investigators (Ref. 3) have used asynchronous vibration
response calculations to help identify the location of the stalled stage by
comparing the ratio of the subsynchronousvibration at the suction and discharge
ends.

INTERNAL ANALYSIS

The result of the field diagnosis was a correlation of the

subsynchronous vibration with the exit flow coefficient. Although this

demonstrates the cause to be aerodynamic, further analysis is required to

determine which component is responsible. The basic strategy for identifying the

component is to calculate the flow angles inside the compressor, for the flow

measured in the field at the inception of the subsynchronous vibration. These

calculated flow angles must then be correlated with the critical flow angle for

rotating stall of each of the suspected components. The critical flow angle for

rotating stall must be known from calculations based on theory, or from

empirical correlations made when sufficient transducers were installed in the

compressor flow passages to identify the component which initiated the rotating

stall. Even with extensive internal instrumentation, it is not a trivial problem

to prove which component is responsible for the rotating stall, as is apparent

from References 5, 6 and 7.

Based on internal instrument measurements in another compressor at the

manufacturer's plant (Ref. 2), the prime suspect was rotating stall in the

diffuser. Other possibilities concerned us, especially rotating stall due to the

deswirl vanes after the diffusers, based on a paper by Bonciani (Ref. 8). This

and other possible causes of the subsynchronous vibration will be discussed

later in this paper. Figure 8 is a cross section of the discharge end of the

subject compressor, showing the vaneless diffusers and the deswirl vanes.
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Internal Transducer Test Results

The manufacturer tested the other compressor at the factory, with

pressure transducers mounted in the last stage diffuser, using full pressure in

a closed loop (Ref 2.) Full gas pressure, or more fundamentally, full gas

density, is necessary to produce the same gas forces and thus the same shaft

vibrations as observed in the field. Of course the same conditions of dynamic

similitude (mainly volume flow to speed ratio and volume reduction across the

casing) must be observed, as in performance testing, to produce the same flow

angles throughout the compressor. Oscilloscope traces of pressure fluctuation

versus time from the two transducers are interpreted in Figure 9 for two

different flows. At the higher flow, the trace shows mainly high frequency flow

noise and impeller vane passing frequencies. As the angle of flow into the

diffuser is reduced, with respect to tangential, an 8 psi (peak-to-peak) stall

cell is formed. The 75 degree angle between the two transducers shows that a

single cell is rotating in the same direction as the shaft. The frequency of the

propagation is i0 Hertz (labeled 1/1800 RPM). Although not shown here, as the

flow is further reduced to a flow angle of 6.5 degrees, the stall forms two

cells of unequal pressure with 80 psi (p-p) at 37.5 Hertz.

Senoo's Theory

This onset of diffuser stall can be correlated to the diffuser inlet

flow angle, for a given diffuser aspect ratio b3/R3 (see definitions). Kinoshita

and Senoo give such a correlation (Ref. 9), as do Ligrani, Van Den Braembussche

and Roustan (Ref. I0). As can be seen in Figure i0, these correlations are very

similar and practically identical in our range of interest. These correlations

are based on theoretical calculations and compare favorably to empirically

determined stability thresholds reported in the literature. Other factors having

a secondary influence are radial and tangential distortion of the inlet flow

from the impeller, plus the Mach and Reynolds numbers, all of which have been

quantified in a theoretical investigation (Ref. II).

The points labeled with the subsynchronous vibrations amplitudes in

Figure I0 compare the last diffuser inlet flow angles, near the inception of

subsynchronous vibrations, to two rotating stall criteria. Several points at

various flow angles are shown to allow the reader to evaluate the inception

point versus the level of vibration he considers significant. Presuming, on the

evidence above, that the stall is occurring in the last stage, the agreement is

fair. Choosing the smallest vibration shown (5 microns or 0.19 mils) as the

inception point, results in the criteria being optimistic by nearly four

degrees, with the actual inception occurring at 13 degrees versus 9 predicted.

These flow angle calculations, for the last stage, were made by the

author, based on the performance test data from the field. One dimensional

compressible flow calculations were used, knowing the state and flow at the

discharge flange, the geometry of the impeller tip plus diffuser, and the

impeller speed. The diffuser static pressure recovery coefficient was estimated
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at 0.46, the slip factor at 0.88, and the impeller tip boundary layer
(displacement) blockage at 0.95. Labyrinth leakages were calculated. In this
compressor, flow is drawn off before the discharge flange and injected into the
balance piston labyrinth two teeth away from the last impeller. The draw off and
the flow up the back of the impeller, as well as the flow from the tip downthe
shroud to the eye were accounted for. This calculation method reflects actual
volume ratios, but is only possible for the last stage. The vendor used an
internal flow analysis refined by many factory tests to calculate the other flow
angles quoted in this paper; these were not adjusted for the minor differences
in observed volume ratio, but are reliable by virtue of extensive and critical
use. The vendor's flow angles were smaller by typically two degrees, thus
agreeing with the stall criteria more closely, being about two degrees larger
than the predicted critical angle, for the last stage.

The mechanismof rotating stall in a vaneless diffuser is due to
unsteady flow in local areas of the diffuser. According to Senoo, it is a
phenomenaof the boundary layer flow along the diffuser walls. Figure ii shows
the behavior of the boundary layer on the diffuser walls at the threshold of
stability according to the theoretical model of Reference i. The flow angles of
the core flow and the boundary layers on the diffuser walls (the walls are
identified with respect to the disk and shroud of the preceding impeller) are
plotted as a function of the ratio of the local radius to the diffuser inlet
radius. The flow angles are defined so that a purely tangential flow would have
an angle of zero. It can be seen that, at first, the disk-side boundary layer
reverses direction and "falls" back toward the impeller under the influence of
the adverse pressure gradient normally existing in the diffuser. Then further
along, the shroud-side boundary layer falls back. Reference i states "... a
reverse flows occurs on the two walls alternately. Such a phenomenahas not been
observed in two-dimensional or conical diffusers and intuitively it is difficult
to understand. Thephenomenais related to the complicated nature of'the flow,
where the two wall boundary layers exchange momemtumso that each boundary layer
satisfies the equations of motion in the radial and tangential directions which
include the centrifugal force and the wall friction force."

Just as a reminder, rotating stall is not the sameas a complete
breakdown in flow, which would cause compressor surge. Whencompressor surge
occurs, all areas of the flow reverse. (The flow meter upstream of the suction
flange will momentarily show zero flow during a full surge cycle.) For Figure II
the core flow is still carrying a net flow in the normal direction.

FLOW ANGLES INCREASED BY ADDING STAGES

To solve the rotating stall problem the manufacturer re-staged the high

pressure compressor from six impellers to eight, causing the operating point to

be much further from surge. This was done by adding two standard modular stages

having a reduced design flow coefficient. The new staging caused the flow

angles in the diffuser to be more radial, thus avoiding the critical angle for

diffuser rotating stall. Another possibility, stall due to the deswirl vanes,
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was addressed as a contingency measure, and will be discussed later.

Table i compares all stages of the original and re-staged high pressure

casing to a diffuser stability criterion used by the manufacturer. The

manufacturerrs flow angles, from an internal flow calculation, are used as well.

This criterion is identical to van den Braembussche (Ref. i0), except that 2

degrees are added to the criterion for the last stage, to account for its

observed sensitivity. The row labeled "stall" indicates whether each stage is

expected to experience diffuser rotating stall at the rated conditions. A dash

indicates that the stage is at the threshold of stall.

The flow angles entering the diffuser are given first for the original

design at rated flow. The original design had six impellers and diffusers. The

flow entered the first diffuser at an actual angle equal to eight degrees. The

next stage was a narrower type, which causes the flow angle to be larger, here

eleven degrees. The succeeding four diffusers were the same width as well, and

the flow angle decreased one degree per stage, due to the compression of gas.

The stall criterion angle is twelve degrees for the first diffuser, which is the

wider. The criterion gives ten degrees for the stages two through five, which

all have the same width. Even though the last stage width is the same as the

preceding stage, its criterion is two degrees larger, based on the factory test

of the internally instrumented compressor. The actual angles of stages one,

four, five, and six fall below the criterion, indicating rotating stall in those

stages. The forces due to the stall increase with pressure. Thus the stall

induced vibration is predicted to predominate on the discharge end of the

compressor.

The solution to the rotating stall was to re-stage by adding two

impellers and diffusers. These had narrower flow passages than the preceding

stages, thus giving larger flow angles. At rated flow, the actual flow angles

for the new stages seven and eight are thirteen and twelve degrees respectively.

Because the load is now shared by more impellers, the first six now operate at a

somewhat larger flow coefficient. As a result, the actual flow angle increases

three degrees on average for the first six stages, compared to the original

staging. Now the actual angles exceed the criteria for all stages except the

first. Stall of the first stage was not readily avoidable with the staging

available, and was accepted on the basis that subsynchronous vibration had not

been a practical problem on the suction end of this compressor.

One unusual aspect of the staging used should be mentioned, because it

helps explain why these stages exhibit rotating stall at flows considerably in

excess of rated flow. The diffuser width is 26 percent greater than the impeller

tip width for the stage designated type "A" stage and 15 percent on the type

"B". The extra width of these diffusers, compared to more conventional designs,

causes the flow angles to be more tangential, and thus more prone to rotating

stall. Narrower diffusers are now being manufactured for the high pressure

casings on the other three platforms. Among other manufacturers throughout the

industry, typical re-injection compressor practice is to design the diffuser
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widths in the order of 0 to 35 percent less than the impeller tip width.

Results of Re-Stage

The results of the design change were completely successful, as shown

by the spectra in Figure 12. The re-stage reduced the subsynchronous vibration

to only 2 microns (0.07 mil) at 45 Hertz. These spectra were taken at more than

rated pressure and near the actual surge line, which was determined during this

test. Operation at 2500 psi discharge pressure and near surge was made as a

proof test. No significant subsynchronous vibration was evident at stall

frequencies (or any other frequency) on the high pressure casing. Previously

2100 psi with a larger margin to surge had been the limit.

One year (8000 hours operation) has now passed without any indication

of reoccurrence of the bearing wear-out problem. Previously 2200 hours

operation was the longest bearing life.

SUBSEQUENT CASE CORRECTED BY NARROWING THE DIFFUSERS

After the re-stage, two other compressor trains from the same

manufacturer having the same design and frame size were purchased. The train

layout was the same as Figure I; the internal design of the high pressure casing

the same as Figure 8. Because of the previous experience, the specified

performance test (American Society of Mechanical Engineers Power Test Code - i0)

was conducted as near to rated pressure as possible, to detect any significant

subsynchronous vibration forced by rotating stall.

Both the high and the low pressure casings of both trains showed

vibration typical of rotating stall. On the low pressure casings, the

subsynchronous vibration was within the API 617 limit of 3.7 microns (0.15 mils)

when operating at rated pressure. On the high pressure casings the

subsynchronous vibration was near the API limit, even though the suction

pressure of the test was approximately half the rated pressure. Correction was

required because there was no way to demonstrate, due to suction pressure limits

with this test facility, that the vibration at full suction pressure would be

within the API limit._To move the stall inception point to lower flows, the

manufacturer installed narrower diffusers in all stages of the high pressure

casings.

Table 2A lists the vibrations observed, while Table 2B lists the flow

angles of the stage presumed stalled, and the flow as a percentage of the surge

flow. In both tables column "A" is the point that encroached on the API limit.

Columns "B" are for a flow 299 above surge, near rated flow, which was 329 above

surge. Column "B" of Table 2B predicts stall, with the fifth stage 0.9 degrees

below the critical flow angle; small stall induced vibrations resulted. The

second compressor was not tested with wide diffusers. Column "D" shows that

narrow diffusers on the first compressor moved the stall inception from 299 to

199 above surge flow .
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The second compressor, with narrow diffusers, had larger subsynchronous
vibrations than the first did with wide diffusers, as shown in column "E".
However the narrow diffusers on the second restricted the flow where large
vibrations occurred to 13%above surge, allowing the surge protection system
settings to exclude this stall from the operating range. The inception point,
column "F", shows that the stall criteria predicted the stall should not occur
for another 0.4 degrees.

The aerodynamic performance was practically unaffected by the narrower
diffusers. The head and efficiency were unchangedat the rated point. The head
versus flow curve was only slightly changed. Examining the row "Rated flow %
above surge" shows that the surge flow is unchangedbetween columns "A" and "D";
thus surge was unchangedby the narrower diffusers in this case.

Table 3 shows the ratio of the diffuser width (b3) to the impeller tip
width (b2) for both the original and revised diffusers. The original diffusers
were unusual in being wider than the impellers, with the last stages, which are
of a lower specific speed, having the largest ratio. The revised diffusers have
a uniform ratios of ordinary proportions.

That the narrower diffusers were successful in eliminating rotating
stall in this case is significant. Manipulating the principle variables,
diffuser inlet flow angle and diffuser aspect ratio (b3/R3), while making no
other changes, supports the theory that the stall criteria in Figure i0 is
sufficient to predict diffuser rotating stall inception, (accounting, where
necessary, for inlet flow distortion plus Machand Reynolds number effects.)
Other theories were considered, as discussed below, but an evaluation was
difficult without the evidence from the narrower diffusers.

WAS DIFFUSER STALL SOLELY RESPONSIBLE?

Both the stator and the rotor can be responsible for rotating stall

phenomena in centrifugal stages with vaneless diffusers (Ref. 5 and 6.) Frigne

and Van Den Braembussche found five distinct stall characteristics in one single

stage test compressor, three due to the impeller and two due to the diffuser.

Table 4, adapted from their work (Ref. 6) summarizes these characteristics.

Stator components other than the diffuser alone can have an influence, as we

shall now discuss.

Influence of Deswirl Vanes Considered

Careful experiments by Bonciani and Terrinoni (Ref. 8) have shown

that, in some industrial centrifugal compressor configurations, rotating stall

type pulsations in the diffuser area can be induced by the return vanes

interacting with the flow. The critical incidence angle with respect to the

leading edge of the return vane mean camber line was found to be 6 to 8 degrees

for the particular stages tested (defined so the incidence is increasing with
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decreasing flow).

A photograph of the return vanes, taken during the re-staging of the
South China Sea compressor, is given in Figure 13 to show the form of the vane
leading edges, which are of a type tolerant to a wide range of incidence. Figure
14 shows the incidence angle, with respect to the leading edge meancamber line,
for the fifth stage before re-staging. As can be seen, there is no stall induced
vibration for incidences less than ii degrees, and strong vibrations do not
appear until the incidence exceeds 15 degrees. The incidence angles for the
preceding stages are similar. No changewas made to these vanes, because the
vendor did not believe the return vanes were the cause of the rotating stall.
Although the re-stage reduced the incidence angle by about two degrees, the
angle at the return vanes still greatly exceeded the 6 to 8 degree criterion for
rotating stall. Therefore violating this criterion does not cause stall in our
case. Perhaps differences in stage geometry, compared to Reference 8, invalidate
applying this particular incidence criterion.

Exit Vanes Modified

The last stage has 12 exit vanes, axially configured, indicated as the

second set of "deswirl vanes" from the left in Figure 8. A cross section of two

of these vanes, drawn to scale for both profile and spacing, is shown in Figure

15. The vanes are required for structural strength, and are not expected to

recover any significant amount of energy from the gas tangential velocity before

passing the flow to the discharge collector. The incidence angle on them was

quite high, being 21 degrees at the rated point, shown as "I" in Figure 15. Due

to some concern about the vane stall theory mentioned above, and because nothing

was lost by doing so, these vanes were modified to blunt struts, as shown. The

elimination of a definite leading edge, and of any flow turning capability,

removed all possibility of the influence of these vanes on rotating stall.

The exit vanes were not made blunt on the subsequent case of rotating

stall, corrected by narrowing the diffusers. As discussed, narrowing the

diffusers, only, was sufficient to eliminate the stall. The incidence angle on

the exit vanes was only slightly improved over the case in the previous

paragraph. Therefore we conclude that the poor incidence on the exit vanes did
not cause the stall.

Inducer Stall Criteria Respected

Following the argument of Kinoshita and Senoo in Reference 9, the

impeller inducer inlet incidence and the impeller diffusion ratio (w2/wl) were

calculated to evaluate the possibility of the impeller causing the rotating

stall. The vendor examined one case, the last stage of the high pressure casing,

the one which has 7 inch diameter impellers as mentioned earlier. The principle

difference between this design and all the others in this paper is that the

hub-to-tip diameter ratio is smaller; 0.36 versus 0.52 on the other compressor

designs. The vendor calculates that the incidence angle at the shroud is 2.5
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degrees at the rated point of the compressor train and 5.7 at surge. This
compressor vibrates due to rotating stall, with the severity increasing as flow
is decreased toward the rated point. Our incidence of less than 5 degrees makes
it unlikely that last stage impeller stall is responsible for the vibration,
based on comparison to the 12 degrees inducer incidence (at the RMSradius) at
impeller stall, reported by Frigne and VanDen Braembusschein Reference ii, and
the 13 degrees (at shroud) reported by Kammerand Rautenberg in Reference 5. The
velocity ratios (w2/wlRMS)are 1.27 at rated flow and 1.43 at surge, which
should be within the diffusion capability of the impeller.

The case where the rotating stall was movedto a predictable lower flow
by narrowing all the diffusers, with no other changes, gives additional support
to the hypotheses that inducer stall is not generally responsible for the
rotating stall induced vibrations described in this paper.

PREDICTING VIBRATION AMPLITUDES

Rotating stall should be kept out of the operating range where

practical, but in many cases this may be neither necessary nor economic. For

instance the low pressure casings discussed above have rotating stall, based on

their vibration spectra, but the vibration amplitudes are not harmful, so there

is no incentive to eliminate the stall. When purchasing a compressor there is a

need to know whether rotating stall will be a potential problem which should be

addressed before it runs at rated conditions in an operating plant. For this,

and other purposes, a criterion for the vibration amplitude due to stall is

useful.

From the equipment user's point of view, such a criterion should

indicate where concern about stall induced vibration begins. Therefore the

criteria should err toward over-estimating the vibrations amplitude. Although

accuracy is advantageous, it is not paramount because once the concern is

raised, any particular case will have to be settled by reference to the

experience of the particular manufacturer involved. Of course some compressors

may then be found acceptable even though they exceed such a criterion.

Criqui has published an empirical criterion for the vibration severity

of rotating stall for the compressor designs discussed in this paper (Ref.12.)

His plot may not be accurate when applied to dissimilar compressor designs.

Figure 16 shows his line, with points added from the cases discussed in this

paper. The criterion predicts significant subsynchronous vibrations for stages

which operate with diffuser rotating stall (expected where the diffuser entry

flow angle fails to meet the criteria in Figure i0) and which have stage

pressure ratios and stage discharge pressures plotting above and to the right of

the line . The added points are for the compressors discussed in this paper.

These points refer to vibration above the limits of API 617, a more stringent

standard than Criqui's line, which reflects operator complaints. His criterion

does not take into account where the particular stage is located along the

shaft, nor how many stages are stalled simultaneously.
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TESTING FOR ROTATING STALL INDUCED VIBRATIONS

Compressors specified to petroleum industry standards are not usually

tested at the manufacturer's works for rotating stall induced vibrations meeting

the previously mentioned API limit. The API 617 mechanical test has nothing to

do with aerodynamic similtude. Nor does it specify the correct frequency range

to find most rotating stalls. The frequency range inspected is 0.25 to 8 times

running speed (API 617 item 4.3.4.4 paragraph i.). Furthermore the usual

aerodynamic performance test, conducted according to ASME PTC-10, cannot be

expected to induce significant vibrations because it is usually conducted at

reduced pressure compared to rated. Although any stall in the flow range should

be present during a performance test, usually no internal instrumentation is

provided which would discover rotating stall.

LESSONS LEARNED

The main points of this case can be summarized as follows:

i. Tilt pad bearings can suffer premature wear-out as a result of

forced subsynchronous vibration, in spite of the relatively low vibration

velocity of the shaft motion. The displacement amplitude of the subsynchronous

vibration (0.17 mils) at the start of the wear-out process, when a new bearing

was installed (shown in Figure 6), was just slightly less than the API Standard

617 limit for subsynchronous vibration.

2. The Senoo and Van Den Braembussche criteria were closely confirmed

by both the field and the factory test correlations of subsynchronous vibration

with the diffuser flow inlet angle. When the criteria were respected, then the

subsynchronous vibration was eliminated.

3. A rated pressure, rated gas density performance test, maintaining

rated ACFM/RPM and rated volume reduction across the casing is required, if this

type of subsynchronous vibration problem is to be demonstrated during factory

testing of new compressors. The rated pressure and density are required to

produce the full subsynchronous vibration amplitude. The aerodynamic similitude

is necessary to reproduce the gas flow angles throughout the compressor as

required to respect the stall criteria.

The API 617 limits on vibration amplitude should be specified for any

such test. However, the frequency range should be revised to include frequencies

lower than the arbitrary 25 percent minimum in API 617. Both limits should be

required of field operation as well.

The subsynchronous vibration problem does not have the same

catastrophic effect on operability as does subsynchronous instability, and in

the case described in this paper, merely degraded the compressor's availability.

Therefore the cost of such a test should be weighed against the magnitude of the
L
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potential problem. The empirical severity criteria may aid the evaluation.

4. Designs of new compressors should be reviewed against the rotating

stall criteria, where the stage pressure and pressure ratios approach those of

this case. Similar criteria are needed for components, other than diffusers,

susceptible to rotating stall.
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NOMENCLATURE

ACFM -

API

b2

b3

d

RMS

RPM

R3

wl

w2

actual cubic feet per minute
- American Petroleum Insitute

- impeller tip width

- diffuser width at the beginning of the parallel
wall section

- impeller diameter in inches

- root mean square

- revolutions per minute

- diffuser radius at the beginning of the parallel
wall section

- relative flow velocity entering the impeller

- relative flow velocity leaving the impeller

Flow coefficient = (700/d^3)*(ACFM/RPM)
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Calculated Diffuser Flow Angles at Rated Flow

Stage

Old Staging
Impeller Type
Actual
Criteria
Stall

1 2 3 4 5 6 7 8

1C 2B 2B 1B 1B 1B
8 11 10 9 8 7

12 10 10 10 10 12
Yes No Yes Yes Yes

New Staging
Impeller Type
Actual
Criteria
Stall

1C 2B 2B 1B 1B 1B 2A 2A
10 14 12 11 10 10 13 12
12 10 10 10 10 10 8 10

Yes No No No - - No No

AGX580-32

Table i. Calculated Diffuser Flow Angles at Rated Flow

Subsequent Case: Wide and Narrow Diffusers

Diffuser Width

Compressor No,

Discharge (mils)

Suction (mils)

Frequency (Hertz)

% Running speed

Subsynchronous Vibrations

A B C D E F

Wide Wide Wide Narrow Narrow Narrow

1 1 2 1 2 2

0.14 0,04 Not 0.05 0.28 0,07

0,012 O.001 tested 0.001 0.05 0.023

41 33 37 26 55

15.7 12,7 14.2 9,7 20,4

AGXF580-37

Table 2A. Subsequent Case: Vibrations Observed
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Subsequent Case: Wide and Narrow Diffusers

Diffuser Width

Compressor No.

Stages stalled

Angle given for stage #

Degrees above critical

above surge flow

Rated flow g above surge

Test point no.

Diffuser Flow Angles

A B C D E F

Wide Wide Wide Narrow Narrow Narrow

1 1 2 1 2 2

2,5 2,5 Not 2,5 2.6,7 2,7

5 5 tested 5 7 7

-4.3 -0.9 -0.7 -2.5 0.4

8.9 29 19 13 27

32 32 32 38 38

c40 c31 c41 f16 f13

AGXF586-38

Table 2B. Subsequent Case: Corresponding Flow and Diffuser Inlet Angles

Subsequent Case: Diffuser Width Changes

Compressor

Stage
1

2

3

4

5

6

7

Original Diffuser
Tip Width Ratio"

Revised Diffuser

Tip Width Ratio"

1 2

1.05 1.06

1.05 1.06

1.06 1.15

1.06 1.15

1.06 1.15

1,15 1.15

1.15 1.15

1 2

0.85 0.84

0.85 0.84

0.84 0.85

0.84 0.85

0.84 0.85

0.85 0.85

0.85 0.85

"Ratio - Diffuser Width / Impeller Tip Width

AGSF688-33

Table 3. Subsequent Case: Diffuser Width Changes
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Rotating Stall Characteristics

Type Character Amplitude* No. of Calls

Impeller Mild 0.065 3_4,5 No

Impeller Abrupt 0.30 1,2,3 N/A

Impeller Progressive 0.10 1,2,3 Yes

Harmonics Freq. Ratio

Diffuser High Freq. 0.10 3 No

Diffuser Low Freq. N/A 2 No

• Amplitude (in diffuser) - (Max. Vel.) /(2*RMS velocity

0.14

0.26-0.31

0.67-0.81

0.17-0.21

0.13-0.16

AGX586-34

Table 4. Characteristics of the Different Types of Rotating Stall

as Tested on a Single Impeller Air Test Facility

(Measured by Frigne and Van Den Braembussche, Refo 6)

Gas Injection Train
INJECTION SEPARATOR

t
RATEOpsia=2100 [8607 300
RATED_cfm= l 260 t 770

I I

GAS TURBINE GEAR COMPRESSORS
18,300 rpm

(RATED)

AGXF586-1

Figure i. Compressor Train
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Shaft Vibration Spectrum
High Pressure Discharge Vertical Probe

MILS P- P
1.5

*---1.288 mils, 27.5 Hz

1.0 -

0.506 mils, 307 Hz

0.5-

0 I
0 100 200 300 400 500

FREQUENCY, Hz

AGXF586-2

Figure 2. Proximity Probe Spectrum of the Problem Vibration

Shaft Vibration Spectrum
High Pressure Suction Vertical Probe

MILS P- P
1.5

1.0

0.5

0

0.94 mils,
307 Hz

*-- 0.44 mils,

.5 Hz_1 _-_ I
0 100 200 300 400

FREQUENCY, Hz

500

AGXF585-3-20

Figure 3. Spectrum at Suction End
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Shaft Vibration Spectrum
LP Discharge Vertical Probe

LOG DISPLACEMENT

0.08 mil,

25 Hz "--0.41 rail7
300 Hz

__ -o.1m,,,
145 Hz

i _,.
0

,A
200 400 600 800 1000

FREQUENCY_ Hz

AGXF580-4-1B

Figure 4. Spectrum from the Low Pressure Casing

Bearing Wear Pattern

, WORN AREA__. PIN

/ .>'_.o

\ _ / WORN
' / AREA _..._-_ II

PIN_- d-i_-_-_ 0oo1"
--- _ - WEARTILT PAD BEARING

ASSEMBLY _ GROOVE

TOP OF PAD

0586-46-050

Figure 5. Bearing Wear Pattern
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Figure 5 A .  Photograph of Bearing P ivot  Wear P a t t e r n  

Subsynchronous Vibration vs Discharge Flow 
MILS P-P 

1.5 

1 .o 

0.5 

0 

0 
0 

0 LEGEND: 
0 
0 0 17,200 rpm 

o 18,450 rpm 

0 

W 

RATED 0 
FLOW 

1 ,a O I o  up  8, c 0 
.O 1 2  .014 .016 .018 .02 .022 .024 

DISCHARGE FLOW COEFFICIENT 

A G X F 6 8 8 - 6 -4 

Figure 6 .  C o r r e l a t i o n  o f  V ib ra t ion  w i t h  Discharge Flow 
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Subsynchronous Vibration vs Suction Flow
MILS P- P

O
O1.5-

O
[]

O

1.o - o ,.o
0

0.5 - []
RATED
FLOW

0 I
.022 .024

LEGEND:

[] 17,200 rpm

o 18,450 rpm

O
0 o 0

0
[] o

[]

I I

,026 ,028

0

.030 ,032 .034

SUCTION FLOW COEFFICIENT

AGXFS-86-7-5

Figure 7. Correlation of Vibration with Suction Flow

COMPRESSOR CROSS SECTION

(DISCHARGE END)

VANES -_

VANELESS (TYPICAL) _
DIFFUSERS
(TYPICAL)

I

IMPELLERS (TYPICAL¿

0586-46-051

Figure 8. Compressor Cross Section (Discharge End)
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Last Stage Diffuser Test
IMPELLER

DIFFUSER /'_,,,,

-_:...'_5Oe_.

AGXF586-9- t I

Figure 9A. Factory Test Arrangement

Last Stage Diffuser Test
DYNAMIC PRESSURE (psi)

FLOW ANGLE 8 psi
9.5

DEG_-_.._

1 1 DEG.

.__.1 17_-_5 Deg. t

1 / 1800 cpm

P

OSCILLOSCOPE TRACES
TIME

Factory Test with Diffuser Wall Pressure versus Time
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Critical
Inlet

Angle
in Degrees

14

12

10

8

6

4

Rotating Stall Criteria

Non- dimensional Diffuser Width

Van Den Braembulsche

0.19e
0.28e

0.54 e /

¢7
// Legend:

// • S_us Vibration (mils)

Angle for Last Stage

I I I 1 I I

0.03 0.07 0.11 0.15
(b3/R3)

AGXF566-35

Figure I0. Rotating Stall Criteria Compared to Field Test

Boundary Layer Flow
FLOW ANGLE, DEGREES

20

10

0

-10

CORE FLOW
/ ---

_'--"_ DISK - SIDE

/LAYER

NORMAL
FLOW

I
REVERSE
FLOW

1.0 1.4 1.8

DIFFUSER RADIUS, R/R3

AGXF586-11-16

Figure ii. Diffuser Boundary Layers (Adapted from Senoo, Ref. I)
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Shaft Vibration Spectrum 
High Pressure Discharge Vertical Probe 
LOG DISPLACEMENT 

0.07 mil, 

0 200 400 600 800 1000 
FREQUENCY, Hz 

AGXF686-12-18 

Figure 12. Spectrum after Modifications 

Figure 13. Return Vanes 
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Return Vane Incidence Angle

SSV AMPLITUDE DISCHARGE VERTICAL, MILS

1.8
o

o

0

0
-- 0

1.5

1.2

0.9

0.6

0.3

0
0

ORIGINAL DESIGN
STAGE 5

0

0000

RATED o

-_FLOW © o o o

0 I I o_ o I o

19 17 15 13 11

RETURN VANE INCIDENCE ANGLE, DEGREES

AGXF586-14-13

Figure 14. Return Vane Incidence versus Subsynchronous Vibration

I = 21 °
\

Modified Exit Vanes

)W VELOCITY
;AMBER LINE

MODIFIED
PROFILES
(BLUNT STRUT )

ORIGINAL VANE
PROFILES

AGXF586-15-11

Figure 15. Exit Vane Modification
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Empirical Severity Guideline
Rotating Stall in a Vaneless Diffuser
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/

[] \ Region of1 B4
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AGX588-38

Figure 16. Empirical Severity Guideline

62



N87-22203

INSTABILITY OF MULTISTAGE COMPRESSOR K1501

Zhou Ren-mu

Hangzhou Steam Turbine Works
Hangzhou ZheJlang, People's Republic of China

The KlSOl compressor, driven by a steam turbine, is used to transport

synthetic gas in fertilizer plants of lO00 tons daily production. The turbo-

compressor set, which had been in operation since 1982, vibrated rather

intensely, and its maximum load was only about 95 percent of the normal value.

Damaging vibration to pads and gas-seallng labyrinths occurred three times from
1982 to 1983 and resulted in considerable economic loss. From the character-

istics of the vibration, we suspected its cause to be rotor instability due to

labyrlnth-seal excitation. But, for lack of experience, the problem was not

addressed for two years. Finally, we determined that the instability was

indeed produced by labyrlnth-seal excitation and corrected this problem by

injecting gas into the mlddle-dlaphragm labyrinths.

This paper primarily discusses the failure and the remedy described above.

INTRODUCTION

In recent years, China imported many large chemical plants that have var-

ious kinds of compressors. Unacceptable vibration has occurred in some running
compressors. The most serious occurrence was with the KTlSOI-KlSOl set that

transported synthetic gas for a fertillzer-produclng process (at lO00 tons a

day). Figure l shows the KTlSOl-1501 set, which consists of one steam turbine

(including two cylinders) and three compressors. Its maximum power is

19 786 kW and its maximum continuous speed is II 230 rpm. It has a traditional

concrete construction pad.

Intensive vibration originated from the low-pressure compressor, KISOILP.

Figure 2 shows the longitudinal section of its rotor. Table I shows the param-

eters of the tilting pad of both bearings. Figure 3 shows the gas labyrinth
construction of the middle diaphragm. Figure 4 provides a critical speed map

and mode shapes for the rotor.

Vibration occurred suddenly each time.

May ?, 1982, when the speed was lO 800 rpm.
observed:

The first accident took place on

The following characteristics were

(1) The vibration of the shaft exceeded 80 _m suddenly.

(2) The vibration accompanied intensive sound radiation (over 95 dB).

(3) Sealing oil oozed out of the gas exit tube.

(4) Intense floor vibration followed.

When the cylinders were opened and examined, the following damages were
observed:

(1) The pads of radial bearing 074 were obviously deformed because of
intensive journal vibration.
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(2) The gas labyrinth of the middle diaphragm and the ends of the cylinder
were worn out. Somewear scars remained on the surface of the shaft.

Whenonly the damagedparts were replaced, the vibration and damagereoc-
curred when the speed reached lO 820 rpm.

There are three identical sets of this kind in our nation - in Nanking,
Anqlng, and Guangzhou. This type of failure occurred in all three compressors.
The most serious failure was in Nanking. Becausethe failures were clearly not
accidental, the Chemical Engineering Ministry began and directly guided exper-
imental research in Nanking. (All the phenomenadescribed above occurred in
Nanking.) The following is a description of the whole test, which was divided
into three steps.

FIRSTOFSTEPOFTEST(May 1982 - January 1983)

At first we did what we could to minimize downtime and production losses.
The origin of the vibration was rotor instability as will be detailed. Although
the labyrlnth-seal excitation was considered to be the cause of the instabil-
ity, the posslbillty of oll whip had not been dismissed at that time. There-
fore the following measureswere adopted:

(I) Six teeth in the middle of the diaphragm labyrinth were removed.

(2) The ratio of bearing width to diameter was decreased from 0.40 to
0.39 mm.

(3) Additional displacement transducers were installed on bearings 074 and

075 (fig. l) to improve vibration monitoring.

Because none of these measures eliminated the rotor instability, a large

quantity of measurements and analyses were then made. This work was performed

mainly by ZheJlang University. Because vibration was monitored closely during

the experiments, no serious damage occurred.

Figure 5 shows frequency spectra of the shaft vibration in direction x

on bearings 074 and 075 at a speed of lO 220 rpm as measured by a transducer

on November 19, 1982. From flgure 5, the rotating speed was 170.3 Hz, and the

frequency of fractional frequency whirl (FFW) was 80 Hz. The frequency ratio

nF equalled 0.47. The vibration amplitudes of the components in this figure
are almost equal. Figure 6 shows a frequency spectra of the shaft vibration

in direction y on bearing 074 and in direction x on bearing 075 at 9460 rpm

on November 19, 1982. Again, the vibration amplitudes were almost equal. The

frequency of FFW was 77 Hz (measured), the rotating frequency was 157.? Hz, and

the frequency ratio nF equalled 0.488. So obviously the FFW appeared at
9460 rpm.

Figure 7, which gives a speed-spectrum map from an experimental recording,

indicates that the FFW appeared Just at 8000 rpm and that nF equalled 0.5.
Amplitude increased rapidly with increasing speed, but frequency dropped

sllghtly_

Figure B shows an evolution of the shaft center orbit measured on bearing

0?4 at 9200 to 9480 rpm on December 18, 1982. It was photographed from the

cathode oscilloscope.

64



All of the test results fully demonstrated that the vibration came from
the instability of the rotor, but the nature of the instability was not

determined. So a power spectrum referring to the vibration of bearing 074 and

to the pulse pressure of the gas outlet was made. The transfer function and

the coherent function were also calculated. However, the nature of the

instability was still not evident.

The following additional changes were performed in this step:

(1) The inlet temperature of the lubricant oll was changed from 40 to
45 °C.

(2) The opening level of the compressor-protectlng valve was changed from

40 to lO0 percent.

(3) The inlet gas temperatures and pressures of the compressor were

changed.

Yet no consistent, useful results were obtained.

At the same time, some temporary measures were taken during the tests:

(1) A middle vertical slipping pin was added on the body of the compressor

to prevent motion caused by expansion of the cylinder.

(2) The supports were packed with insulation to prevent the cold current
heat losses from influencing them.

Attention was also paid to the pads and oil-seallng sllprlng of the cyl-

inder, but no effects were obtained.

SECOND STEP OF TEST (February - October 1983)

To clarify the nature of the instability, we decided to observe the

dynamic properties of the rotor KI5OILP on a balancing machine. This test was

performed by Hangzhou Steam Turbine Works (ref. l). The test included the

following:

(1) High-speed balancing of the rotor
(2) Observation of the critical speed and its insensitivity to other

parameters

(3) Increasing the number of the oil-lnlet holes in the

bearings

(4) Increasing the clearance in the bearings

Figure 9 shows the Nyqulst tracks before and after the balancing cor-

rection. Before the correction the severity of the bearing vibration increased

quickly when the speed exceeded 9000 rpm. For the sake of safety the pedestal

stiffness was increased from 820 to 2250 N/_m. When the speed reached

II 230 rpm, the two bearings were vibrating at 6.5 and 2.2 mm/sec, respec-

tively. This result indicated poor balancing. We found that the mixed vibra-

tion of the second and third modes appeared before the second critical speed

was reached. Using the method of modal separation, we corrected the unbalance
of the rotor. The bearings were vibrating at only 0.3 and 0.35 mm/sec, res-

pectively, when the pedestal stiffness was restored to 820 N/_m. The first
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critical speed was 4000 rpm and the second was lO 700 rpm; these speeds are in

agreement with the results of our calculation. The results of our experiment

on insensitivity indicate that the rotor Is sensitive to unbalance at

II 230 rpm. (This does not conform to American Petroleum Institute (API)

standards.)

The Nyqulst tracks of the rotor with one and with five oil-lnlet holes
(one hole for each pad) in the bearing are shown in figure lO. The dotted

lines in the figure show a change of rotor vibration for one oil-inlet hole.

However, oll whip did not take place. The oil clearance was increased from

0.15 to 0.20 mm, but the state of the shaft vibration did not change. It was

impossible to test the labyrlnth-seal excitation, for the rotor was driven in
a vacuum chamber.

In brief, hlgh-speed balancing showed clearly that the instability of the

rotor did not come from the oll whip.

THIRD STEP OF TEST (November 1983)

To eliminate the vibration failure rapidly, we cooperated with Mltsublshl

in completing a series of tests on November 5-8, 1983. The test speeds were

to lO 222 rpm on the first day, and to lO 550 rpm on the third day. All the

tests were within specifications. The test procedure for the fourth day is

shown in figure II. After reaching lO 750 rpm and running for an hour, the

shaft vibrated intensely.

Figure 12 shows a real-tlme analysis of the shaft vibration during stable

operation. Figure 13 shows the same analysis during a period of instability.

Figure 14 gives a three-dimenslonal spectrum analysis of the shaft vibration

in direction x on bearing 075. Figure 15 shows an orbit of the shaft center

during instability.

The tests just described make clear the inevitability of rotor instabil-

ity. But comparisons between figures 7 and 14 show that the latter tests did
not produce considerable FFW before instability appeared, and the amount was

less than that of the operational speed-frequency map by 25 dB (fig. 12). Just

before the rotor became unstable (fig. 14), the frequency of the FFW was

74 Hz/sec (which is the same as in fig. 12). This frequency suddenly rose to

80 Hz after 5 sec (which is in agreement with fig. 13). The frequency ratio

nF equalled 0.4465.

MEASURES TAKEN

Although much important data on the dynamic properties of the rotor were

acquired through the three steps of the tests, the nature of this instability
has not been directly determined. According to the information and inference,

however, the origin of the instability is labyrlnth-seal excitation. The com-

pressor manufacturer also provided some suggestions for improvements.

Finally, a decision was made that gas should be injected into the laby-
rinths of the middle diaphragm. The new construction is shown in figure 16.

After this measure was taken, the instability was eliminated. Figure l? shows

a frequency spectrum of the shaft vibration on bearing 074 at lO 690 rpm before

corrective measures were taken, and figure 18 shows this spectrum after cor-
rective measures were taken. It can be seen that the FFW was eliminated.
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The sameresults were obtained In Anqulng immediately after the Nanking
tests.

CONCLUDINGREMARKS

The following are someof the author's viewpoints included only for
reference:

I. Instability of compressor Kl501 was excited by the labyrinth seal
without regard to bearings, oll seal, and other factors.

2. The fractional frequency whirl (FFW)resulting from the labyrlnth-seal
excitation was a positive precession rather than negative precession as usually
observed (ref. 2).

3. Comparisonsbetween figure ? and 14 show that the evidences of insta-
bility appearing after hlgh-speed balancing of the rotor differed from those
before balancing. Evidently the rotating speed at which the visual FFW
occurred increased.

4. The mlddle-dlaphragm labyrinth with gas injection as shownin
figure 16 effectively eliminated the excitation existing in It, so that the
method presented by Klrk (ref. 3) was again proved to be reliable.
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TABLE I. - PARAMEIERS OF TILTING PAD BEARING

Diameter of journal, mm
Width of bearing, mm
Specific load, N/cm 2

Clearance, mm
Number of oll-lnlet holes

Bearing

074

I01.6

41

59.3

0.II to 0.14

1

075

114.3

47

48.7

0.14 to 0.17

1
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KI5OILP KTI501 _I501MP KI5OIHP

!
074-bmae_n_1-075 028a 028b 028c 108 ll5 126 133

Figure I. - Steam turbine compressor set of KT150-KI501.

Figure 2. - Rotor of KI5OILP.
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Figure 3. - Labyrinth construction.
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Figure 14. - Three-dlmenslonal spectrum of shaft vibra-

tion in bearing 075 at lO 750 rpm during instability.
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CALCULATING ROTORDYNAMIC COEFFICIENTS OF SEALS

BY FINITE-DIFFERENCE TECHNIQUES

F.J. Dietzen and R. Nordmann

University of Kalserslautern

Kalserslautern, Federal Republic of Germany

For modelling the turbulent flow in a seal the Navier-Stokes equations in con-

nection with a turbulence model (k-_-model) are solved by a finite-difference

method. A motion of the shaft round the centered position is assumed. After cal-

culating the corresponding flow field and the pressure distribution, the rotor-

dynamic coefficients of the seal can be determined. These coefficients are com-

pared with results obtained by using the bulk flow theory of Childs [i] and with

experimental results.

INTRODUCTION

It is well known that the fluid forces in seals, which are described by equa-

tion (I)

have a strong influence on the dynamic behaviour of rotating turbo-machinery.

While there exist some good theories for calculating the coefficients of

straight seals [I], no satisfactory model is known to describe the effects of

grooved seals. Reference [2] presents a survey and comparison of results of

existing theories. The authors' opinion is that the existing methods are not

at all satisfactory. The main weakness of these theories is the fact, that they

are using so called 'bulk-flow-theories' which connect the wall shear stress with

the mean flow-velocity relative to this wall. Howeve_in the region of a groove

there occur stresses in the fluid which cannot be neglected. Calculating the flow

by using the Navier-Stokes equations in connection with a turbulence model elimi-

nates this disadvantage. Therefore, a finite difference model is presented which

allows the calculation of the coefficients by using these equations.
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Nomenclature:

Fz , Fy

K, k

D, d

M, m

U, V_ W

P

k

s

We' PI' _t

P

t

x, r, 8

q

ok, oS , K

Cp, C1, C2

So

C
0

6

r o

r o
e -

Co

k

Forces on the shaft in z and y direction

direct and cross-coupling stiffness in eq. (1, 24)

direct and cross-coupling damping in eq. (1,24)

direct and cross-coupling inertia in eq. (1, 24)

axial, radial and circumferential velocity

pressure

turbulence energy

energy dissipation

effective, laminar and turbulent viscosity

density

time

axial, radial and circumferential coordinate

radial coordinate after transformation

Constants od the k-s-model

Constants of the k-s-model

general variable standing for u, v, w, p, k or s

general source term

seal clearance by centric shaft position

seal clearance by eccentric shaft position

radius of the precession motion of the shaft

perturbation parameter

rotational frequency of the shaft

precession frequency of the shaft

entrance lost-coefficient

Length of the seal
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ri

r a

Subscripts

0

1

R

S

radius of the rotor (shaft)

radius of the stator

zeroth order variables

first order variables

rotor

stator

MATHEMATI CAL MODEL

To describe turbulent flow by the Navier-Stokes equations the velocities and the

pressure are separated into mean and fluctuating quantities.

u = u + u' v = v + v'

w = w + w' p = p + p'

Time-averaging of the Navier-Stokes equations leads to terms of the following

form: _-r_-r, _-r_-r, _-r_T.

TO substitute these terms one can use the Boussinesq's eddy-viscosity concept.

For example:

Pt 3u 3v

= - 7 (_ + Tx ) (2)

Pt is the turbulent viscosity, which is not a fluid property but depends strongly

on the state of flow. Summing up the laminar and turbulent viscosity to an effec-

tive viscosity

_e = _I + _t ' (3)

one obtains the following time-averaged Navier-Stokes equations for turbulent

flow. (In the following the overbars are omitted.)

I. axial momentum:

3u 3 3 , 3u, 13 13 3u 13 , wu" la ,1 3u,
p_ + _-_(puu) - _t_eT_; + _(rpvu) - _(rl_e_- _) + _-_tp ; - _-ot_Pe_; =

_@__p a , au, la , 3v, 13 , Bw,
3x + _t_ea-x; + r_e-@x; + raOtPe_-£; (4)
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2. radial momentum:

3v
P_ + __x(pUv) 3 , 3v, 13 "r " 13 r 3v, 13 13 ,1 3v,- _-_,pe_-_) + -_-_ pvv) - r_-{(pe_--_-) + _--6(pwv) - _-6_--_e_-_; :

__p 13 @v 3 , 3u, 13 3 w 2 3w 2 _0 2
3r + r_-r(rPe_ ) + 3-x_Pe_-r ) + r3-c)(rPe_-r(-r)) - -r2"e_ - r2Pe v + r w (5)

3. tangential momentum

3w 3 _ , 3w, 13 13 3w 13 13 ,i 3w,
p_ + _-x(pUw) - _tpe_-_) + _(rpvw) - _-_(rlJe_ ) + r_(pww) - r_-6trlJe_-_)=

_lBp 13 _v 3 ,1 3u, 1 3v
r30 + r_(_e_ ) + _£r_e_-O _ + rZ_e_

4. continuity equation

w 3 13 ,2 v" 13 ,1 3w, Pvwrz_(r]_ e) + r_-_r]_e ) + r_-E)_Pe_-_).-

(6)

13 'r " 13 x(PU)+ pv; +  T (pw): o
(7)

To describe Pt we use the k-_ turbulence model [3, 4]. This model determines Pt

as a function of the kinetic energy k of the turbulent motion and the energy

dissipation _. It is relative simple and often used to calculate the turbulent

flow in seals [12, 13, 14, 15]. Stoff [12], for example, compares his flow meas-

urements in a labyrinth seal with calculations on base of the k-e model. He

observes that both agree well.

k2 (8)
Pt = c p_--

The equations for k and c can be derived in exact form from the Navier-Stokes

equations

5. turbulence energy k

. 3 _Pe3k_ . 13 13 , Pe3k
3_k 3 _puk) .... _ -
_St " 3-x' 3X_OkSX_ • _(rpvk_ _-_£r_kk_-_)

G - pe

+ l_(pwk) 13 _IPeSk_
- =

(.9)
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6. energy dissipation

ae a _(laeae la la , Ueae,
p_ + _(pue) - ax'a a-x) + _(rpve) -_-r_r_--a--6)

la la (l_eae_ =
+ Fge(pwe) - Fa-o'F6-g6'

ez (10)
C2p_-CI[G -

G = lae{ 2(/av_ 2 tau/2 /law + v 2) av au_2 flav'_' + W_' + 'rae -_) + (gi + ag' + 'Fa_ +
aw w = aw lau_2}
ar r) + (a-x + raC)'

C = 0.09 CI = 1.44 C2 = 1.92

K

< = 0.4187 o k = 1. o = C_(Cl - Cz)

(II)

To model the flow in the case of a shaft moving on an eccentric orbit, a coordi-

nate-transformation [5, 6] is made. (Fig. 1)

r e-r
n = r a - _ CO (12)

8(O,t) is the seal clearance, varying with angle @ and time t. By this trans-

formation the eccentric moving shaft is reduced to a shaft rotating in the

centre of the seal.

We must note that the following relations of the transformation must be used.

+ (an)O(_-_)r

aq_ aq_ aq_ an
(Y[)r = (_)n + (a-n)t(a-%-lr (131

(_x) r a@:
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PERTURBATION ANALYSIS

The rotordynamic coefficients of a seal are in a wide range independent of the

shaft eccentricity. Therefore we can assume small shaft motions around the cen-

tered position which allow us to use a perturbation analysis.

6 = Co - eh I

u = uo + eu 1

w = w° + ewI

v = v o + ev 1

P = Po + ePl

With these expressions and the coordinate-transformation equation (12) the

equations (4), (5), (6), (7), (9), (10) change themselves.

This is demonstrated in the following examples.

From equation (12) we obtain:

h
r=n+e -_

Co(r a - n) (14)

and so:

a Coa 1 a

ar 6 an h an
1-e -_

Co

(15)

l@_(rpvu) =
1 i a {p(q + e_o(ra )(u o + eul)}q + e_ - _ - q))(v 0 + evlCo(r a - n) I e an

0

la la
= _(nPVoUo) + en_-_n{np(UoVI

_a , ra 1
+ VoUl)} + eCoi-_(PUoVo) + (I -_-)_PUoVo}

(16)
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1 D
{T6(p(Uo+ eu )(wo + ew ))

q + e_(r a _ q) I i
O

D D ra - r
+ _-6(p(u° + eu )(wo + ew )_(r a Co)}

(17)

: e!_t i i a'q_ tp oWo)Co_--n-nao_PUo w + PWoU ) + e(n - r _ID , u ,1 Dh_

Du ,DUo Du_ D(Uo + eu_)D • ra - r

p_-_ = Pt_-- + _-_-) + PDn Tttra _ Co) (18)

Du+ DUo n - r h_ _a_W'_

= epic- ep_q-(- Co _Dt

One obtains a set of zero-order equations for uo, vo, wo, Po' ko' _o and a set

of first-order equations for uI, v1, w I, Pl" It is assumed that the viscosity ue

remains constant for small motions. Therefore the kI and _1 equations can be

dropped.

The variation of the seal clearance for an eccentric shaft can be described by

the following equation

hi = eZ-cose + Y sine

So we establish the same assumptions as in [1], that the velocities and the

pressure in circumferential direction can be described by sin- and cos-functions,

in our first order equations

u I = Ulc cose + Uls sine v I = Vlc cose + Vls sine

w I = Wlc cose + Wls sine Pl = Plc cose + Pls sine

By separating in the resulting equations the terms with sine and cosO we obtain

two real equations of every 1. order equation. These equations are then arranged

in a new form by introducing complex variables.
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Ul = Ulc + iUls

Wl = Wlc + iWls

hl = z+iy

_1 = Vlc + iVls

Pl = Plc + i Pls

Wenow assumethat the shaft is moving on a circular orbit with frequency
1

around the centered position. Also h I takes the form:

hl = ro eiQt

and similary

Ul = 01 eiQt _1 = G1 eiQt

^ _ ^G1 = Wl ei_t 1= Pl eiQt

In the following we assume that t = 0; this means that the shaft is just moving

through the z-axis in the y-direction.

The resulting equations for uo, v o, wo, Po' ko' eo and GI, VI' Wl have all the

same form.

Tx- (pUo_) - T_ (re ) + % Tfl- (nPVo¢)
1 a 8¢

_n (rcn_) = S¢ (19)

Zeroth Order Equations

¢ re s¢

aPo a , aUo 1_ , aVo,
Uo Pe -a-x- + TxtPea-x -) + n_tPenaT_

vo lJe
aPo + _), _)Uo, i;) , aVo 2

+ -) - %Vo +

WO_) _VoW °Wo Pe -_2 _ (qPe) -

I 0 0

II e
k -- G - p_

0 GI.

Pe

_o
_2

CI_G - C_,p_--
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First Order Equations
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r¢ s¢

Q1 Pe _aa___xl+a ao_ 13 , a9_, a 18_(Pea--x-' + n_(qPe_--x-) - _-_(PUo01) - 5_-_(npUo91)

Pe Wo .p _ iPe3_
-_01 + ip(-_ +-_-)01 + 1_UoWI n ax + D1 + iD2

91 Pe
3 801_ 13 , aV1, _ a ^ _ 13

__.__1 + _-x(Pe_x-' + __(,nPeaT) 3x(PVoUl) __(npvogl)

3 W_ Pe Wo
-iPe_(-_)- 3_z91+ ip(-_-_)91+ (2PWo + i2_ + i_qVo)Wl+ D3 + iD4

Q1 Pe in_ - ia _Pe0 .la a ^ i a_,_-- 1) - 1_-_(PeOl) - _-_(PWoUl) - _-_(pn2Wogl)

Only the first order continuity-equation to determine Pl shows a slightly

modified form.

3 la iP_l + D7 +iD8_-_(PO1) + _(np9 I) = (20)

A

The parameters DI - D8 do not depend on Ul' v1' w1' Pl and result from the

coordinate-transformation. (DI - D8 are shown in the appendix.)

FINITE-DIFFERENCE METHOD

For solving these equations a finite-difference procedure is used which is

based on a method published by Gosman and Pun [7]. The seal is discretized

by a grid (Fig. 2) and the variables are calculated at the nodes. The veloci-

ties u, v are determined at points which lie between the nodes where the vari-
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ables p, w, k, _ are calculated (Fig. 3). Because of its general convergence
a 'hybrid -difference' method is used, which meansthat the convective terms

are calculated by a 'upwind'- or a 'central-difference' method as a function

of flow-velocity and grid-distance.

Becausethere is no explicit equation to calculate p we use the continuity

equation. Starting by a guess for p, the momentum-equationsare solved; with

the resulting values u, v (G1, c_I, _i) the flow through the control-area around

a point for the pressure p (61) is calculated. If the difference between the

entrance- and the exit-flow rate is less than O, p must be reduced; in the

opposite case p must be increased. This is done by the 'SIMPLE'-procedure [8]

or better by the more modern version 'PISO' [9].

However one has to respect in the determination of Pl with these procedures

that the equation for Wl has not the same form as for 01 and Vl" Also we have

to notice that uo, Vo, Po' Wo' ko' _o are real-, while 01, Vl' Wl' Pl are of

complex type. The mesh to calculate u, v doesn't extend all the way to the boun-

dary wall, and the component u, w is allowed to slip in accordance with the

logarithmic law of the wall.

LEAKAGE FLOW AND DYNAMIC COEFFICIENTS

Leakage flow, Centered Position

For centered shaft position the values Uo, Vo, Po' Wo' ko _o are determined.

Boundary conditions:

UoS = 0 VoS = 0 WoS = 0

UoR = 0 VoR = 0 WoR = _.r i

The leakage results from the calculated axial velocity uo-

Dynamic Coefficients, Eccentric Shaft Motion

For calculating the dynamic coefficients the following assumptions are made:

i. The shaft rotates on a circular orbit around the centered position.

2. At time t = 0 the shaft is located at: z = r o, y = 0

3. The viscosity we remains constant in spite of the eccentric motion.
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Boundary conditions: (Fig. 4, 5)

Stator: ulS = (0., 0.) vlS = (O., 0.)

A

wlS : (0., 0.)

Rotor: UlR = (0., 0.) VlR = (O"(_-m)'Co) WlR = (_Co' 0.)

1 2
Entrance: PA = _ pu (1 + _) + PB

PlBj : - pUOBj(1 + _) UlBj^

A

Exit: Plcj (0., 0.)

To satisfy the entrance condition we make use of the iterative character of the

finite-difference method. This means that we start with a pressure PlBj^ at the

entrance and after every iteration step we check if the calculated UlB j satisfy

condition (21). If not, the pressure _IBj will be corrected.

The resulting forces on the shaft are calculated by a pressure integration for

the five precession frequencies: _ = 0_, 0,5 _, 1,0 _, 1,5 _, 2 _.

_r i

- gz = o_T_-- I pl C dx (22)L

_r i

- Fy = ol_- f pz S dx (23)L

By a 'Least-Square-Fit' we obtain the rotor-dynamic coefficients of (1) from the

following equations

(24)

The precession frequencies can be arbitrarily chosen, because the dynamic coeffi-

cients are mostly independent of them. We take the same as in [1].

RESULTS FOR AN ANNULAR SEAL

To test the theory, calculations are made for a straight smooth seal. The results

are compared with the experimental values of Massmann [10] and the results of

Childs theory [1].



Seal Data:

L = 23,5 mm _I = °'7"1°-3 Ns/m3

r i = 23,5 mm p = 996 kg/m 3

Co = o,2 mm _ = o,5

A fully developed turbulent axial and circumferential flow at the entrance of the

seal is assumed. As in [10] flowrates are measured, in the presented calcu-

lation we suppose that the axial flow velocity is known:

Uaverag e = 16,46 m/s

and that the average circumferential velocity at the entrance is half the shaft-

speed.

For a known mass flow the pressure difference between entrance and exit of the

seal can be calculated. The results of this theory are compared with Childs

theory in Fig. 6.

In Fig. 7, 8, 9, i0, 11 results of the presented theory, Childs theory [1] and

experimental data from Massmann [i0] are shown.

Both theories are in good agreement with each other and with the measurements.

For calculation a mesh with 15 x 5 nodes in x-r direction was applied. The CPU

time was about 30 sec on a Siemens 7.561 computer.

RESULTS FOR A GROOVED SEAL

We also made some calculations, for the grooved seal, whose geometry and seal

data are shown in Fig. 12. In Fig. 13 the leakage for a given pressure difference

is presented as a function of the groove depth. First the leakage decreases and

then slightly increases again. This behaviour agrees with the measurements of

Black [ii].

In Fig. 14, 15, 16, 17 the stiffness K, k and the damping D, d are shown. The

coefficients K, k, D decrease with growing groove depth. Only the damping d

increases. Although we haven't yet any experimental results for this seal the

tendencies seem to be right.

CONCLUSION

It is shown that it is possible to calculate the dynamic coefficients of seals

with a finite-difference method, based on the Navier-Stokes equation in connec-

tion with a turbulence model. Although application on straight seals is possible,
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it was not our aim to develop a procedure for this seal configuration but to

present a method which will be applicable on grooved seals. The superiority of

the theory versus other methods is the simplicity in use for grooved seals by
A

only neglecting the terms D1 - D8 in the equations for GI, _1' GI' Pl in the

grooves, while there exists no mesh displacement.

Appendix:

Transformation-constants for first order equations

5Vo _uo ra)l( _Vo ra _eBUo
D1 =Tq(_e_ - + _e_-_- - PVoUo) + (1 - n "n'Pe_-_- - PVoUo) + (1 -_-,_

r a _wo _ 3uo
D2 = (-_-- l){_-_(_eT_-) --_(PUoWo)} -Qp_--_-(n - r a)

ra _ _

D3 (1 rl )(PWoWo PVoVo We _e_V°"
..... 2n2v o +L_-- _-_- ) _(PVoVo)

BPo + 2___, _Vo,
- 3--6- _ntPeT6-_

= ra _ ,{3 , 3 Wo 3 3Vo
D4 (_-- i)-5_t_eq_(-_--)) --_(PWoVo)} - f_p_--_-(q- ra)

D5 - _-_EUeq_-_- ) -_-_(UeWo ) + (I - _--)_e_t-_- ) -_n(PVoWo) + 2.{VoWo(a - I)

3w o
ra _ _ _e _Po__ _p_(n - ra)D6 = (1 --_-){T_(PWoWo) --_(2_-Vo) + 3n "

r 3v o
D7 = p a_o(_- _) _7-

r a _wo
D8 = (1 - -_-)p_-_-

With, for example:

1_ _u 12 , _v, 13 13 13 )+
r_r(r_eT_) + _r_r_e,_-_) = _r( r _xr) _ _rri(q TXrO) + e_(q _xr 1

h1:1_ , ,ra ra,l@ ,

%t_'-_LqL_- - 1)ZXro ) + (2 -_--)_q%Xro)}
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Fig. 1 Geometry of the eccentric shaft

Fig. 2 Mesh arrangement in the seal
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This paper presents an analytical method to determine static and dynamic char-

acteristics of annular parallel-grooved seals. The governing equations were

derived by using the turbulent lubrication theory based on the law of fluid

friction. Linear zero- and flrst-order perturbation equations of the govern-

ing equations were developed, and these equations were analytically investi-

gated to obtain the reaction force of the seals. An analysis is presented that

calculates the leakage flow rate, the torque loss, and the rotordynamlc coeffi-

cients for parallel-grooved seals. To demonstrate this analysis, we show the

effect of changing number of stages, land and groove width, and inlet swirl on

stability of the boiler feed water pump seals. Generally, as the number of

stages increased or the grooves became wider, the leakage flow rate and rotor-

dynamic coefficients decreased and the torque loss increased.

INTRODUCTION

Annular pressure seals can significantly influence the dynamic behavior of

rotating machinery by the presence of a hlgh-pressure difference in the close

clearance spaces of the leakage path.

Black and Jenssen (refs. l to 3) have explained the influence of seal

forces on the rotordynamlc behavior of pumps. Childs has analyzed the short

seal (ref. 4) and has made flnlte-length analyses (ref. 5) based on Hirs' gov-

erning equation, which yields an analytical expression for the seal dynamic

coefficients incorporating all of Black and Jenssen's various developments.

Although these results apply only for small seal motion about a centered

position, Allalre, et al. (ref. 6), the authors (ref. 7) have expanded these

analyses to calculate dynamic coefficients at large eccentricities.

Fleming (ref. 8) has developed an analysis for gas seals wlth a constant

clearance or with convergently tapered geometries. Child (ref. 9) investigated

dynamic coefficients for convergently tapered seals both analytically and

experimentally.
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Previous analytical and experimental developments have generally examined
dynamic characteristics of the annular straight seal and the tapered seal. But

the dynamic characteristics of the parallel-grooved seal have not been analyzed
theoretically. Bolleter (ref. lO) experimentally investigated stability limits

for balance pistons with two different types of serratlon. He showed that ser-

rations that are deep and wide prevent seizure.

In this paper the static and dynamic characteristics of the multistage

parallel-grooved seal operating within the turbulent flow region are analyzed

theoretically with consideration of the inertia effect. The present analysis

combines the previous analysis of the straight seal with the analysis of the

labyrinth seal performed by the authors. Namely, land analysis is used for the

straight seal and groove analysis is used for the labyrinth seal.

C
Zo

Cxx, Cyx

D

F

H

K , K
xx yx

L

Lz

lg

Mxx, Myy

MG

P

Q

R

R
a

R
r

S

T

t

SYMBOLS

nominal seal radial clearance, cm

seal damping coefficients, N s/m

Journal diameter, cm

fluid force, N

seal radial clearance, cm

seal stiffness coefficients, N/m

seal length, cm

land width, cm

groove width, cm

seal add mass coefficients, N s2/m

fluid mean depth, cm

fluid pressure, MPa

rate of leakage, m3/s

seal radius, cm

axial Reynolds number

circumferential Reynolds number

number of stages

groove depth, cm

time, s

lO0



Torq

u,w

V

x

Y

z

£

e

k

p

T

torque, N m

tangential and axial fluid velocity components, m/s

Journal surface velocity, m/s

circumferential coordinate

radial coordinate

axial coordinate

small eccentricity ratio

diverging angle of stream behind land section

friction Ioss-coefflclent

fluid viscosity, mPa s

fluid kinematic viscosity, m2/s

loss coefficient

fluid density, kg/m 3

shear stress, Pa

journal angular velocity, rad/s

Subscripts:

a

c

d

ex

f

g

in

J

l

r

s

axial direction

radial direction

groove defined in equation (13)

exit

between clearance flow and cavity flow

groove

inlet

journal

land

circumferential direction

casing
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GOVERNING EQUATION AND ANALYSIS

Governing Equation

Figure l illustrates the geometry of the parallel-grooved seal. Under the

usual assumptions for problems of throughflow across annull wlth a fine clear-

ance, the momentum and continuity equations are, respectively, as follows:

,Bu -@{F _au aP 2- "'v"- - a u _p._U (x-dlrectlon) (1)

(z-dlrectlon) (2)

_- +_T +_= (3)

are integrated across the fllm and are

um and wm.

The fluid velocities u and w

transformed into the mean velocities

- - -- -_ dy a_ dy - a _ dy = a (Hw m )
um H wm - H 0 0 a-T at 0 a---t

/ " @ /H fH a f dy_ atw" dy a H @ (Hum)
o w_ dy =_ o =a-_(r'aHw'n) 0 YF dy =]7 o

a

f H-a'ffOw_--_z dy =_-_Z/OaH W-'--ffdy =aa__(ra_.n,,,,,o,,,) f Hoa'---za_dy =T-io_.a/ HO"w dy =_-z-z(HWm)a

_ _-xx d y = u--w d y @
0 0 = a-'x ( r _,(a H.mwm ) a---i_dy -0 at

For a fully developed turbulent flow regime the velocity profile shape becomes
flat, and the quantity is close to unity as shown in Burton's experiments
(ref. ll).

r =F =F =r =I
rr ar ra aa

(4)

Equations (1) to (3) can be rewritten as
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(HUm) + _ (Hu_) + _ (//unlwnt) = _H- P + T ]tl

a(H_ m) + a(HUmWm) + a(tlWl_ I) -. _HaP +

at _x aa @z
Tta

aH + _ (HUm) + a {Hwtrt) =O
_ °

at @x @z

Assumptions for Analysis

The assumptions for this analysis are as follows:

(I) The fluid is llquld and incompressible.

(2) The fluid flows into the groove chamber with a constantly diverging

angle (ref. 12). This is illustrated in figure 2.

(3) For a small motion of the seal Journal about a centered position, the

streamline in the groove moves with the journal.

(4) The groove cross section Is rectangular.

CS)

(6)

C])

DERIVATION OF SHEAR STRESS IN MOMENTUM EQUATION

The shear stress terms of equations (4) and (5) are discussed here.

Land. - The axial components _lsa,_lja of shear stress at the
casing and Journal are given by

lsa
I

TZj a = ZZa =-_" PXzaW_m (e)

where xla
surface:

defines the friction coefficient between the flow and the wall

_a _- ,., (9)

The circumferential components _lsr,_ljr of shear stress at the
casing and journal are given by

uzm x

"cZar. = Tla w_m = _ PXlaWlmUlm
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RoJ- u Zm 1 (R_-
"el jr = _a _Zm = _'pkza_ra ulrn)

(I0)

This equation is strictly applicable only for Ra >> Rr. Therefore the shear

stress of the land can be written as follows:

l - = -PE - H_)
Ttr 0 = I_jr TZsr ZaWZm(UZm

: 12PaW_m_ta = _lj_ - _sa : - _-

(ll)

Where the effective viscosity _a (ref. 13) is

_a = O'Ol(7-3B)Ra)_Za_

Groove. - The crossflow in the groove is considered to be the cavlty flow
plus the clearance flow (fig. 2). The exchange of energy within a small mixing

area between both flows is influenced by the entrance velocity and the geo-

metric shape of the groove. The clearance flow can be described by a stream

tube if this mixing area is replaced by a separating layer. The cavity flow

assumes that the momentum that is supplied from the Journal is balanced by the

sum of the momentum lost by fluid friction at the separating layer and the

momentum due to cavity flow. If the cavity flow is replaced with flow through

a circular pipe, the fluid mean depth of groove MG is given as

MO - g _ (12)

2(Lg+T+ T-LgtanO+Lg/cOS(})

The friction coefficient between the groove wall and the fluid is

(Udm-o4MG) "°'2 sXd = o.o791 - (13)

Therefore the momentum that is supplied from the side and root of the groove
is expressed, where

{( }2(_PX d R-'l'+--ff--}ta-Udm x T+ (T-LI (14)
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And the momentum that is lost from the fluid frlctlon between the clear-
ance flow and the cavity flow is

_pl ) _. L �tossf (Udm-Ugm 9
(15)

where xf defines the fluid friction loss coefficient between the cavity flow

and clearance flow, and kf = 0.1 (ref. 14). Using equations (14) and (15),
one can calculate the circumferential fluid velocity of the cavity flow Udm.

The axial component of shear stress Is given by

(16)

and the circumferential component by

u
= I gm _ I pX w u

gsr gsa w 2 ga _m gm
gm

where

U dm- U.qm 1

rgfr = "rgfa W = "8- PXt'wgm(ud.z-Ugm)
gm

(17)

Therefore the shear stress of the groove can be written as

_tr = Tgfr - %gsr = T pO. 25XfWgm(Udm-Uf]m ) - T P_#awem_(gm

"_ta = "_Hfa - "_Haa = - TP(_'Ha +0' 25)'f)u2ora

Derivation of Static Characteristics

A.xta.!_f_l_ul.d_yel_o_.clt3..- The pressure loss is stated as follows:
The inlet loss at the land entrance is

(IB)

where

I

{I = 1.5 (at Ist stage)

(19)
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°.,, wl, o tI2t'"'w62 = 1.95 -_

H1 = C_o+LgCan% _2 " C_o

The wall friction loss in the land Is

APt 2 L_° 1 :
= C_o 2 Pl_aU_o

(20)

The exit loss due to diverging flow behind the land Is

I
aPZe = =-}"P_U_o (21)

where _2 is the exit loss coefficient

._ C_o )=
{2 = _ C_o+LgCanB (at each stage)

(  _LoI'{2 = I Czo+21 (at seal exit)

The friction loss at the wall and the separating layer of the groove is

C{ )= LgAPe = :XPU_o2(XH a+O'25xf) Io+LH/2"¢an@° _Cio+Letan@
(22)

The pressure restoration due to deceleration at the groove is

AP = 0 I
C. +L tane r,antJ]8 PUl, O

gup _o g _'_ Czo+Lg
(23)

The pressure drop across the seal is equal to the sum of each pressure
loss and Is stated as follows:
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P . -P = _P_in +S(APz+_Pzez+APg'_Pgup +_P_in)+_P_+_Piez

1 + S pU_o-- ), ps 1
=T P_;_;o CZo Za +-2- =0 C_o+Lg_;anO

I C_o

1 ZC_o /, Czo I
p ;o

z _Lz 1 (._ Czo )= (24)

Rate of leakage. - The main advantage of the grooved seal is that leakage

flow can be minimized but seal components need never rub. Seal leakage flow

may also be denoted by Q, where

Q = _ol.° 21rz. d_ = _1.o01.o(2R+Cl.o ) (25)

Figure 3 shows the calculated results of leakage flow. As the number of

stages increased or the land became narrower, the leakage flow decreased.

Circumferential fluid velocity. - From the momentum equation (5) for the
land

_UZo X V
@--'_"--+--_ =Zo " Z 2 (26)

where Z = Czo/k a

UZo = Uzo(Zn_i/2)-

and V = R_. The boundary condition is

The circumferential fluid velocity Uzo '

"?.o = -Y - -U/.o(=,__)

z = Zn_l/2;
at the land is

(27)

From the momentum equation (5) for the groove

+ go (Xga+O.2SXf) =
@_ 2Cg o 8Cgo

(28)
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where Udm can be calculated from equations (14) and (15) and the boundary
condition is

=u j
n = z n Ug ° gO(Zn

The circumferential fluid velocity Ugo at the groove is

ug ° = uz -UugCgo-A/¢anO (29)

where

XfUdm

= - u n) A = _ga+O.25_f u =_Uug Uz go(z z 8 A

Figure 4 shows the axial distribution of circumferential fluid velocity
AP = 0.49 MPa, N = 4000 rpm, L = 55 mm, and S = 20. The results indicate that

the circumferential velocity approaches one-half of the shaft angular velocity

exponentially.

Torque loss. - The method for estimating the torque loss in a grooved seal
treats the loss as frictional dissipation by viscous shear in an annulus. From

equation (lO) the torque loss of the land is

J gn[LZ xr°rqz = 0 JO Zjr
x R x Rd@dz

(3O)

The torque loss of the groove assumes that the groove is divided into four

parts as shown in figure 5. The shear stress of part l is

I 2

"rg I = _p},dUdra
(31)

Therefore the torque loss of part l is given as follows:

Similarly

"cgI = "rg1
JO JR-T

Tg2 JO JO

x r x z,dCdr = --_ R -(R-T) "-8 PXdU m

Tg 2 x(R-T) x(R-T)dCd= = plI(R-T) aLg_.dUadr a
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f 2n/R-Lg_anOTg3 = 0 JR-2
x v x rd_dr =

xg3
--: (R-L

g
_an

1

= "¢

Tg4 JO JR-L tanO g4

g

x v x rd@dr

CzoUto

= 2..._ {R'-(R-L tanO)31 10lg a CZo+ L
3 g g tan O- Ugo ( Zn+ l/2 )

Therefore the torque loss of the groove is

Torqg = 2g I + Tg 2 + Tg 3 +Tg 4
(32)

And the total torque loss of the parallel-grooved seal is defined by the fol-

lowing equation:

S+I S

AT = _ Torq + z_ Yorqgi =1 _ i=I
(33)

Figure 6 shows the torque loss of the parallel-grooved seal for
AP = 0.49 MPa and L = 55 mm without inlet swirl. As the number of stages

increased or the seal clearance decreased, the torque loss increased.

Derivation of Pressure Distribution

For a small motion about a centered position the clearance, pressure, and

velocity are expanded in the perturbation variables as follows:

B = Co + ¢_ P = Po + (P1 um = Cao + ¢u1 Um = Uo + (Ul
(34)

where Co, Po, _o, Uo are steady-state values and _, P1, Wl, Ul are small

perturbations. The short-bearlng solution (ref. 4) is developed for the first-

order equation by neglecting Ul, the pressure-lnduced circumferential veloc-

ity component.

Static pressure distribution. - The steady-state equation described is

static, has zero eccentricity, and is solved analytically. Substitution of

equation (6) into equations (ll), (18), and (34) yields steady-state, axial-

direction momentum equations for the land

and for the groove

_Pzo 12_ aWlo

_z C a
Zo

(35)

109



Bp : 2 ;k
= _ PCZoWlo sa

@z 8(Clo+Ztan8) z
(36)

where ksa defines the equivalent friction coefflcient of the groove.

= _ +O.8$_f-Stan8Xsa _a

Pressure distribution of nonsteady state. - Substitution of the perturba-

tion variables of equations (6) and (7) yields the following perturbation equa-
tion for the land:

@z CZo @z - C_o

-P e Clo _t +U_o @z Cio _z
(37)

_--1-= - ct---_ TT +"to-_
(38)

Equation (38) can be integrated by using the boundary condition z = Zn_i/2,

WZl = Wll(Zn_i/2) as follows:

1 Z a¢
= _ _ fzfz,¢)(z - Zn_, ) _ (e-z/_

wZl _Z1(_n_ _) CZo 2 -OZ ° uuz"_= -I)
(39)

where

a_ v _
fz(z,t) = _-_ +-- = -

_z uu_ 2 U_o(an.l/a)

Equation (19) yields the following perturbatlon-varlable boundary condi-
tion at the seal inlet:

Pt1(zn_ v2) = -P{1_Zo_t1(z __2)
(40)

The perturbatlon-varlable boundary condition at the seal exit is given as

z = z ; P -0
n Zl(z )

n

(41)

The complete solution for the perturbation pressure is obtained as
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PZl = 18uquZ°_C_0 PRLI + 6_--_f_(m,¢).PRLSCz°

CZo _-_ + -_ _=/l_=iPiILe ÷

PuuzZ

cl° _fz(=,t) Par.?

(42)

where PRLI to PRL8 are provided in appendix A.

Similarly for the groove the axlal-momentum equation and the continuity
equation reduce to

@P=oo P
@P@___I= Cg o @_- Cgo(Xga+O.86Xf)_goUg !

"_C o U_o (7o gl l (43)

@_ @u C @u I 30 B_

Substitution of equation (29) and the boundary condition

into equation (44) yields

CI° - fg(Z,t)
u(71 = u(71(zn)-_g o Cg o

0 (44)

z = zn, Wg I = Wgl(zn )

C-a+l . C-a+l B,_
-- +¢_Io (z nA _-_n-_n"_io Zo - z )t,anO- C " 3z Cz

go (70
(45)

where

fg(Z,t) = _-{ + uz.
a " Al_a,10

The pressure boundary condition is

z = zn P(71 = Pgl(z n)

The perturbation-varlable boundary condition is obtained as

(46)
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Pgl(Zn ) - p_ _= 2 Zo gl(z n)
(47)

The complete solution for the perturbation pressure is obtained as

P
2 = PCzoWZoUug" Bd2

= -PCz°wZ°XsakO'PRG16tanO + PC_oWZo_ea'fg (x't)'PRG14 + A+tanO @'-'_'PRG6

- A+tan8 " B--_ PRG18 PCz°°l°tanO .fg{z,t).pRGg +A_t-S-_-h-_.Bz_BzlPRa21

+p _-_ +u z' _-_ f(l(z,t)'PaOla +PCtouZouugXsa._-_.paai8A- tan@

-PCz°u_°tanOXaa -A-tan8 +uz" _-zzl_-zz] PRaI_

+ ._zfg(z,t)'PRa20 -P_zo tanO fg(x,t).PRaIa
(48)

where PRG1 to PRG2 are provided in appendix B.

Dynamic Force

For a small motion about a centered position the clearance function is

defined in terms of the radial seal displacement (AX,AY).

¢_ = - AX oos¢ - AY s_.n@ (49)

The components of the reaction force acting on the seal journal are defined by

the integrals

r..÷,)÷r=,,r.=,,V x = cP_ 1+ a cPgl
[,,=Ijo|J",,- V, J" . J ° J's, V,

= - EPzI+ ¢P_I JO Jzs+_2Fx t,,=Uo tJz __ j=.

(50)

Substituting for _ and its derivatives into equations (42) and (48) yields

the following form for the seal coefficients:

FX =

Fy

X

4-
Y

MXX
4-

Myx

}/

i;
(51)
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Because the seal coefficients of each stage are dlfferent, the following
definitions are used. The dynamic coefficients of the parallel-grooved seal
become

S+I S S+I 8

_xx _ _ Kxxz* _ Kx_g _ = _ K_xz÷ E K_xg
n=1 n=1 n=1 n=1

S+I S S+I S

S+I S S+I S

n=l n=l n=l n=l

(52)

where

KXX = Kyy KyX = - KXy CXX = Cyy

Cyx = - CXy MXX "= Myy Myx = - MX% = 0

The dynamic seal coefficients for the land are

yR 12gaW_o pV == --- C z IPRLI --_-fIPRL2KXXZ Clo lo

pu _ZV = = ]pu ._

uc -IPRL?)+_IPRL8 J+_(IPRL4

[6_ V 12gaUuZ_

= [-_oTIPRL8 - C 2 IPRL4K_Xl C_o _o

PWzoV

IPRLI + pW_oUuZ_ IPRL3 ]- -Kx[ _

_R[8. ]CXXg = --_---_o[C-_ ° IPRL8 + puZ. ° IPRL1 = CI¥
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C_o
IPRL8 - UuZ_ IPRL4 + Uu_ IPRL7 - -CXZ _

]
CXX l = Clo[ 2 IPRL2 - Uu_Z(IPRL4-IPRL?) - -Cx¥ z

p_R

HXX Z = - 8Cz------o'IPRL8= MXy z MyX l = MXy I = 0

where IPRLI to IPRL8 are provided in appendix C. The dynamic seal coefficients

for the groove are

2 2CzoWZo )'

KXXg = p_R[ _-{-_-_ 8a IPRGI + C _2 tan8_,Zo io 8a
'IPRGI 3

_2

+_-_-IPRG16 - UuZU_ "IPRGI?
{A-tanO)R 2

UuZUz a_ (7
+-_-_ IPRGSO + (A_tanO)RaZp R 81 - Kyyg

K EXg = pnCzoOZo[U ksa

U
IPRG14 + ui 8a IPR018

A-tan8

u tan8

Czo
IPR016

Uu i tanO

C to( A+ t,anO ) ,IPflOl8

z i_u Z

tanO IPRO8 + A+'tanO TPI_I2d - -XXy @

114



tan8Cxxg = pITRCzoU_O -laa IPRG14 + C_°
IPRGI_

+_-_.O zPRG8 - cyZg

[ _uZ

Cxxg p_ [2u= z A-tane "IPRoI?IPRG16
+uuZ ]-_- IPRG20 = -CxYg

MXXg = -pwR,IPRG16 = MZyg

Myxg = HXYg = 0

where IPRGI to IPRG21 are provided in appendix C.

NUMERICAL EXAMPLE

Seal coefficients were calculated for a pump seal with the characteristics

shown in table I. The dynamic coefficients decreased with an increase in the

number of stages (fig. 7); that is, the axial Reynolds number became small

because the pressure loss increased with an increase in the number of stages.
The cross-coupllng terms were relatively sensitive to swirl at the seal

entrance; as the inlet swirl was propagated right through, the mean circumfer-

ential fluid velocity approaches one-half the Journal speed exponentially
(ref. 15).

Figure 8 illustrates the influence of the ratio LTg of land width L7
to groove width plus land width (L7 + Lq) for N = 4000_rpm and L/D = 0.25_

As the clearance ratio Cz/Cg bec_me s_all, the dynamic coefficients became

large with an increase in the ratio L_g.

CONCLUSIONS

The static and dynamic characteristics of the annular parallel-grooved
seal were theoretically investigated with consideration for the effect of the
turbulent flow and the inertia term.

As the number of stages increases or the land becomes narrower, the

dynamic coefficients and the leakage flow rate decrease. But torque loss
increases rapidly.
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APPENDIX A

qz] = P_Zo X+0"824(52 -(X+0"8846.1) I12 a ÷ . C z
to

m _ q

qzl Z2 "{" 2Pa (z ;_Czo n-Z/n)

PRLX = • - Zn__2- m L l

PRL2 =(z - z )2 2n_ Z/2 - ,. . C z

PRL3 = e -z/Z - 1 - m'(e-Ll/Z -11

PRL4 : a-2z/[ - I - m'{e-SLz/_ - 1)

PROS = (_n- n ).e -z/t -Lt/t
n_l/2 - m L t.o

PRL6 = PRLX + Z PRL3

PRL7 = I'PRL3 + PRL5

1
PRL8 -- PRL3 - -_- PRL4
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APPENDIX B

qgl = P_o I- - 2tanB

qg2 = PU/,° (1- +

z _oCzoXsa z
m = clg 2 " P.tanB "_go

j1 = 1/c_ - 1/c_o
j2 = 1/ca - 1/c_1 o

_3 = I/c_ - i/c_I o

-a.,l
-a-1 Cl °j_ = c_ -

J4 = Zn(Cl/Czo )

-a+ 2 C-a+ 2
- _oJ6 = C I

J7 _ C-_a+l -a+l- Clo

-a
j8=C 1 - Clo

-2a+I . C'lgoa+ l
J9 = C 1

1 PCl,_t°lo)'sa

Jll = "_ "-_----' 2_ana
qgl

J12 = (JlO'L g + Jll"J1)

-a+3

,/13 = C-1a+3 Cg o

-2a+2

= C_ 2a+2J14 " Cgo

I17



1 l

C 3 C_go o

re.J3

I I

- re.J2

PRGS = z - z - m.L
n g

1 1

PRG2 = _ -

Cgo C_o

- m. Jl

/C m. J4
PRG4 = In(Cg ° lo ) -

PHG6 = C -a-1 - C-a-I - m.J5
go lo

PRG7 = C-a+2 C-a+2
go - Zo - m.J6

PRG8 =(z - zn) C-a-I - m L " C; a-1go g

-a+] -a+1

PRG9 = Cg ° - Czo
- m.J? PRG]O = c-a c-a

go - Zo - m'J8

PHGII =(_ - z n) C-a - m L .C; a
go g

-2a+l _ c-2a+l
PRGI2 = Cg ° lo - m.J9

)
PHG13 = tan=Ok 3 -2

PHG14 = tan28 - PHG2 +-_ PRG3

PHG15 = tan=O Zo

I(-C o )PRG26 = tan20 PRG4 + tanO'PRG5

c-a+l

PHGI7 - A-tanO PHG9 + tanO PRG4

I

PRGI8 = PRG8 +--7.PRGIO
A
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PRGI9 =

1

A+tan8

C-a+1

PHG_ +_ PRO_
2tan@

I

PRG20 = PHGII + "_
A-tan8

PRG9

PRG21 =
2A- t,anO

C-a+l

PRGI2 Zo PHGIO
A

APPENDIX C

II = q_l _2 LZ +_o _

IPRLI = L_/2 -Ll'I1 IPRL2 = L_/3 - L2/2"IIz

IPRLS = -l( e-Lz/l - I) - L l -( e-L_/_ - I).II

IPRL4 = Z IPHL3 + IPRLI

IPRL6 = -Z.Lla-Lz/_ -_2(e-L_/_ -1) -LIa'LI/_'11

Z(e-2LI/Z -I) -L l {a-gLI/_ -l)'IIIPRL6 = -_

IPHL? = _.IPRL3 + 'IPRL6
1

IPRL8 = IPHL3 --_- IPRL#

C l = CZo + LgtanO

IPRG2 -

IPRG3 =

J2 L

IPRGI = -2tanS- ---z_-U_o-J3.J18

J4 L
-Jl. Jl2

tan8 CZo

J1 L

tanO C_- -J2._18
lo
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IPRG4 =
C I

--J4 - L
tan8 g

-J4.g12

5 2
IPRG5 =--_ - L .J12

2 g

IPRG6 =
J8

A LgC-z: -I -JS. JX2

IPRG? = -
J13

- L C -a+2
A-3tan8 g Zo -J6.J12

L
IPRG8 = -_ c-a

A 1

J?

A (A- tan #)
- L C-a-l"

H I J12

IPRG9 = -
J6

L C-a+l
A-gtanO - g _o -J8.JX2

IPRGIO =
J7

A-tan8 -LHC[: -JS.J18

L C -a+1

IPRGXI = - 9 1
A-tan8

J6

(A-tanO) (A-StanO) -LgC] a 'J12

IPRG12 = -

J14
L C -3a+I

2(A-tanS) - g Zo -JP.J18

i {Czo I zeRa_
zPRai3 = t-L-_-_o_-?-zeRai -T /

i( Czo )IPRGI4 = tana_ -IPRG2 + _ IPRa_

IPRGIS =

I

tanZ6(Clo IPRG2 + IPRG4)

)IPRG16 = ta,z_O -CIo IPRG4 + tanO.IPRG$

1 C -a+l
ZoIPRGI? -

A_$_n8 IPRG9 + 2$ano'IPRG4
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1
IPRG_8 = IPRG8 +-:-IPRGIO

A

IPRGI9 = -

C-a+l
1 Zo

A+tanO IPRG# + 2t-_an "IPRo3

IPRG20 = IPRG9 + IPRGII

c-a+l
1 Zo

IPRG21 = IPRGI2 - _.IPRGIO
2A-tanO A
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TABLE I. - NUMERICAL CALCULATION MODEL

Working fluid .............................. Water
Fluid temperature, K ........................ 293.15

Density, p, kg/m3 ......................... g.982x102

Viscosity, g, mPa s ......................... 1.009
Kinematic viscosity, v, m2/s .................. l.O06xlO-6

3ournal radius, R, mm .......................... lO0.O

Seal radial clearance, C o, mm ...................... 0.4

Seal length, L. mm ......................... 55 to 205
Groove depth, T, mm ........................... 3.0

Divergent flow angle, e, deg ....................... 4.0

3ournal rotating frequency, N, rpm ............... 2000 to 8000

Pressure difference, AP, MPa ................... 0.49 to 4.9
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Figure I. - Geometry of parallel-grooved seal.
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Figure 2. - Streamlines and coordinate system for seal analysis.
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Figure 5. - Torque loss of groove.
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Based on Childs finite length solution (ref. I) for annular plain seals an ex-

tension of the bulk flow theory is derived to calculate the rotordynamic coefficients

and the leakage flow of seals with parallel grooves in the stator. Hirs turbulent

lubricant equations are modified to account for the different friction factors in

circumferential and axial direction. Furthermore an average groove depth is intro-

duced to consider the additional circumferential flow in the grooves. Theoretical and

experimental results are compared for the smooth constant clearance seal and the cor-

responding seal with parallel grooves. Compared to the smooth seal the direct and

cross-coupled stiffness coefficients as well as the direct damping coefficients are

lower in the grooved seal configuration. Leakage is reduced by the grooving pattern.

INTRODUCTION

An important assumption for the reliability of high speed centrifugal pumps is

a good rotordynamic behavior. Connected to this problem hydraulic forces acting on

the rotor are of major importance. It is well known that neck or wear-ring seals as

well as interstage seals (fig. 1) may have a large influrence on the bending vibra-

tions of a pump rotor. Besides their designed function of reducing the leakage flow

between the impeller outlet and inlet or two adjacent pump stages, respectively, the

contactless seals have the potential to develop significant forces. This type of

forces created by lateral rotor vibrations can be described by stiffness-, damping-

and mass coefficients in a linearized model

(i)

For rotordynamic calculations of multistage pumps the machine designer needs to

know this dynamic characteristics of the actual seal configuration. For smooth seals,

where both stator and rotor elements have the same smooth surfaces, analytical and

experimental investigations have been carried out (ref. 1,3,4,5). The results con-

firm the validity of equation (I) and dynamic coefficients can be predicted by the

finite length solution derived in ref. I with sufficient accuracy. A finite length

solution is also available for seals with different but directionally-homogeneous
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surface roughness for the rotor and stator elements (ref. 2).

The subject of this investigation is a seal type with parallel grooves in the
stator element and a smooth surface in the rotor element. Concerning the leakage
flow, this type of seal is more effective than the pure smooth seal, because of
higher friction in the axial direction. However, if pumprotordynamics is important
the dynamic seal coefficients have to be known. Up to now the stiffness and damping
characteristics of grooved seals and their influence to the stability and unbalance
response of pumprotors is not well investigated and there is a need for additional
research in this area.

At the present time, there are only a few techniques available in the technical
literature. Black and Cochrane (ref. 6) have improved their earlier theory for smooth
seals by introducing an equivalent length for the grooved section to reduce the cir-
cumferential pressure gradients. Recently, Childs and Kim (ref. 7) have extended
their analysis procedure (ref. 2) to predict rotordynamic coefficients of grooved
turbulent annular seals.

In the present paper an extension of the bulk flow theory (ref. I) is given,
to calculate rotordynamic coefficients and leakage for seals with parallel grooves
in the stator. The theoretical results obtained by the developed procedure are cor-
related to experimental results, measuredat a seal test rig. Furthermore the grooved
seal results are comparedwith corresponding data of the smooth seal configuration.

BULKFLOWMODELFORSEALSWITHPARALLELGROOVES

Seal geometry

Fig. 2 showsthe type of seal, which is considered in our investigation. It
consists of a smooth rotor and a circumferentially grooved stator. The seal has the
radius R, the length L and may have different clearances at the entrance C and the
exit C , respectively The groove geometry is described by the groove dept_ H andI " R
th_ groove length L and land length L Weassume, that the groove depth H has"_ G L" R
approximately the same order of magnitude as the seal clearances C , C_.
In the following derivations the groove geometry is described simply b_ an average

value HR* for the groove depth (fig. 2).

Bulk flow velocities

In Childs finite length analysis (ref. I) for plain seals a bulk flow model was

used. Following this procedure we introduce the bulk flow velocities UZ in the axial

Z-direction and U@ in the circumferential direction. The axial velocit_ U_ is con-
sidered only in the region of the actual seal clearance H. Although there_is a fluid

circulation in the grooves: in the Z-direction, this part of the flow is neglected

in our model (fig. 3). In circumferential direction the real velocity distribution

(fig. 3) is replaced by a constant bulk flow U@, which is assumed to act in the area

of the average seal clearance H* = H + HR*. At the rotor surface the fluid velocity
is R_ with the shaft angular velocity _.

Fig. 4 points out the variables of the bulk flow model for a seal location with

coordinates Z and @: the two mentioned velocities UZ, U@, the fluid pressure p and

130



OF POOR _,..;;:__._tt

the local clearances H, H* : H + HR*. All quantities depend on the coordinates Z
and Q and the time t, as well.

Wall shear stresses

Concerning the wall shear stresses at the rotor and the stator we refer to Hirs

formulation, expressing the shear stresses by an empirical function of the bulk flow

velocity relative to the wall. First we apply this relation for the roto_ assumSng

a smooth surface in the two directions. With the bulk flow velocity VR=[(U@-R_i2

+ U_] 1/2 relative to the rotor surface (fig. 5), we obtain

2H VR mR P P

TR = nR (--_---) _ VR 2 : CR [ VR 2 (2)

n_, m_ are empirical turbulence coefficients, P is the fluid density and _ the kine-M
matic viscosity of the fluid.

With the relations of figure 5 we can determine the components of the rotor wall
shear stress

XR@= TR(U@-R_)/VR ; xRZ = TR Uz/VR (3)

Contrary to the definition of TR_ in equation (3) we use a slightly different form
and define T- with the seal clearance H* instead of H, which is used for T in the

axial direction. After some steps we obtain from equations (2) and (3) RZ

nR H* mR U@-R_ 2 (1+mR)/2

TR@ : _--P UZ (U®-R_) (_) mR Ra {I + (-_--Z) } (4a)

nR 2 mR UO-R_ 2 (1+m R)/2

TRZ : 7- p UZ R {I + ( ) } (4b)

2H UZ
with the axial Reynolds number R -

a

Caused by the parallel grooves the stator has different friction characteristics

in the two directions. In axial direction it behaves like a rough surface. For the

circumferential direction we assume a smooth surface. Again we refer to Hirs formu-

lation and UZ_)_ the wall shear stress _s2 _exr in dependence of the bulk flow velocityVS = (U +

TS : CS _ Vs2 (5)

In the case of the grooved stator the triangle ratios of figure 5 are not quite

correct. Nevertheless, we still use the relations and express the shear stress compo-

nents approximately by

_S@ : _S Uo/Vs ; TSZ : _S _/V S (6)
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The resultant friction factor CS (eq. 5) can be introduced by the following
superposition rule

CS (q2 2 2 sin2_) I/2: SOcos _ + CSZ

2H*VS
CS@: ns@(---g---) ms@

2HVS mSZ
CSZ: nsz (--O--)

(7)

nsG, nsz, mS@, msz are empirical turbulence coefficients.

Formula (7) describes the changeof the resultant stator friction factor C_ in de-
pendenceof the local flow angle 9 (figs. 5,6). If we consider one of the special
cases, e.g. a pure flow in axial direction, we obtain

UZ : VS, U@: O, 9 : _/2, sin_ : I,

CS : CSZ_TS@:O, TSZ: CSZ@ UZ2

cos9 : 0

From equations (5), (6), (7) we finally end up with the two shear force compo-
nents

H.ms6ns@ ms@ nO 2 (I+ms@)/2

: CS" (_--) U-_TS@ 2 P UZ U@ Ra {I + ( ) }

TSZ CS nSZ 2 mSZ U@ 2 (I+msz)/2: 2 PUz R { + ( ) }

(8a)

(8b)

C_', CN are defined in the Appendix (8a) and (8b) can be compared with prior re-

sults from Childs and Kim (ref. 2). They differ only in the coefficients CS , CS".

BULK FLOW MOMENTUM AND CONTINUITY EQUATIONS

Figures 7 and 8 show a differential element of the fluid having the dimensions

RdS, dZ, H(Z,@,t) or H*(Z,8,t) respectively. The upper and lower surfaces cor-

respond to the rotor and stator seal elements and have the velocities R_ and zero.

Figure 7 points out the bulk flow velocity components U_ and U_ with their changes
in axial and circumferential direction along the element. For the derivation of the

momentum equations the wall shear stresses T , T and the pressure p at the different

seal surfaces have to be taken in account (f_g. _). Summing forces in the two di-

rections for the free body diagram leads to the axial and circumferential momentum

equations 9 and 10, respectively
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Sp _uz suz _uz sue
- H _ : _sz+_Rz. _ (-W- ÷ Uz -¢f-- ÷ us R-_e) - _Hs* Uz _ : o

H* _p _U 9 U@ _U 0 _U@ _U 9

R _9- TSg+XR9 + pH*(-_--+ R _9 + UZ _-Z---) - PHR* UZ-_-- = 0

(9)

(10)

In comparison to the derivations of reference 2 both equations have an additional

term with the average groove depth H_*, expressing an added momentum change caused

by the grooves. Furthermore the shear stresses are different as described in equa-

tions (4) and (8). Note that H* is used in the circumferential momentum equation.

The bulk flow continuity equation (11) also has

3H 1 _ HUe B HUz 1 _Ue
3-£ +_ (_W-) + (Tf -) +_* --:3e o (11)

an added term resulting from the flow difference in circumferential direction in

the area of the grooves. If we substitute the shear stresses Tn7 , T_7 , Tn_, T_ by
the velocity-dependent formulas (4) and (8) we obtain the compT_te bNlk _Iow _ua-

tions (see Appendix A), which can be used for further analysis. By introducing the

following variables

u = U /_, u@ : Uo/R_o , _ : p/pV# 2
z Z

h : H/_, T : t/T, z --Z/L, C : (C + CI)/20

T = L/_', b = V/Rm, V average axial velocity

the equations can be treated also in nondimensional form.

PERTURBATION ANALYSIS

In the further analysis we follow strictly ref. 2. The governing equation (9),

(10), (11) or the corresponding equations in non-dimensional form define the bulk

flow velocity components u@, u and the pressure _ as a function of the variablesz
R@, z and the time T. The expansion of this equations in the perturbation variables

U : U + Cz zo Uzl u9 : Ugo + s Uol
eV _ _V"

h = ho + e h 1 P = Po + c Pl

(12)

with the eccentricity ratio c = e/_ yields zeroth-order and first-order perturba-

tion equations.
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Zeroth - Order - Equations

The eccentricity ratio s = 0 describes the centered position of the rotor in

the stator element If we introduce u , U@o , h° and Po in the nondimensional bulk• ZO

flow equations, we obtain the following zeroth order perturbation equations.

Axial Momentum Equation:

_Po I

= {oR aoR + d a De + 4q}
_z 2f3 sz osz

Circumferential Momentum Equation:

(13a)

_U@o I h * mR h * m
{(_9_) OR (UOo_1) + (_hO_O_) s9 Da (13b)5z - 2f aoR °sOaoso UOo}

0 0

Contuniity Equation:

I (13c)
Uze = _--

0

The parameters of these equations are defined in Appendix B. h = f is the dimen-

sionless clearance function for the centered position and q = _C -C_)/(C +C_) is a

measure of the degree of taper in a seal. For the constant clear_nc_ sea_, [teated

later in this paper, it follows q = 0 and h = I. The quantities OR, a and
are defined by o sz °sO

: : ,L : (_) (14)a R (_) XR ; asz '_) Xsz; as9 Xs®

with the wall friction factors

IR : nR Rao
mR 1_ )

I + 4b 2

: n R
sz sz ao

Xs@ : ns@ Rao

(1+mR)/2

m (1+m )/2
sz sz (15)I + I-!-)

4b 2

I + l-L)
4b 2

ms8 (I+ms@)/2

The solution of the zeroth order equations define the steady state leakage and

the development of the circumferential velocity U_o(Z) due to wall shear. In general
the coupled and nonlinear equations have to be SOlVed iteratively to determine the
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leakage flow corresponding to a specified pressure drop. A leakage coefficient Cd
can be introduced for the leakage/pressure drop relationship

_Po: Cd?_ 2

In formula (16a) the pressure drop at the entrance

(16a)

APro - 1+_ 2 P -V 2
(l+q) 2

(16b)

is included. For the special case of a constant clearance seal without fluid rota-

tion we obtain the simple relation

Po _ (oR + a ) p rj 29z sz 7 (17)

which can be used to determine the empirical coefficients nR, mR, nsz , msz

First order equations

The first order equations describe the pressure and flow conditions due to a

small seal motion about the centered position. Their derivation is relatively ex-

tensive, therefore we mention only some important steps in the solution procedure,

following again references 1,2. To find results for the first order quantities Uzl ,

u@1' PI' the time and O-dependency is eliminated by the assumption of a harmonic
pressure and velocity distribution in circumferential direction and by introducing

a circular harmonic seal motion with the relative radius r = R /C and the frequen-
o

cy _. In this way the first order equations are reduced t_ a system of three cou-

p lea, complex ordinary differential equations for the complex unknowns Uzl , u@1 and

PI' which now depend only on the axial coordinate Z.

_z

Uzl

u@1 +

m _

a11 a12 a13

a21 a22 a23

a31 a32 a33
I Uz I

u91

Pl
r{1: (_£) g2

g2

(18)

The 3x3-matrix A has the following elements

a11 = - 2q/f ; a12 = - j _T f*/f ; a13 = 0

a21 f* = f*( FT) ; = -jf*b(L/R)= A3@ ; a22 A20+J a23

a31 = A3z + 2q/f 2 + jFT; a32 = A2z+J_Tf*/f2+j(L/R)H_/(bf2); a33 : 0
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with F : _-t0U@o(Z), T : L/V

and the right hand sight consists of

gl = 2q/f3 + jFT/f

g2 = -f*AIo

+ 2q/f 4 + jFT/f 2)
g3 = -(A1z

The parameters A10, A20, A30, A1z, A2z, A3z are expressed in Appendix B.

With the boundary conditions of ref. I the equations (18) can be solved and

yield the solution for the velocity and pressure field of the form

u-1]

[,I
flc + j fl s

f2c + j f2s

f3c + j f3s

(19)

Dynamic Coefficients

From the pressure field solution of (19) the reaction force components acting

on the rotor due to the circular shaft motion can be determined by integration of

the pressure along the seal and in circumferential direction. As pointed out in ref.

I the nondimensional form of eq. (I)

I = + T

(20)

can be used in the definition for the radial and circumferential components of the
reaction force

F (gT)
r

Fg(_T)

I
2 L

- _"+ _ (_T)-_ (_T)2 : c-_(_ J f3c(z_dz
0

I
-2 L

_ _ 2
k- C (nT) -m (CT) =- (_)C "[ fBs (z) dz

Cd o

(21)
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Finally the dynamic seal coefficients K, k, C, c, M, m can be found by a least

square curve-fit-procedure applied to the right hand side of equation (21).

Applicability of the derived equations

The presented equations can be applied for smooth as well as grooved seals.

Furthermore it is possible to investigate constant clearance and tapered seals. All

equations are expressed in a form corresponding to prior derivation from Childs

(ref. 1,2). Therefore it is easy to reduce the general form into simpler expressions

and to compare them with prior equations. In the special case of a smooth constant

cClearance=C" = sealI, q =oitfollowsand h _RI= HR* = O; H = H*; nR = nsz = nso; mR = msz = mso;
o

A_l further parameters, especially those defined in the Appendix are changing for

this special case and the resultant equations coincide with the equations in ref. I.

THEORETICAL AND EXPERIMENTAL RESULTS

FOR SMOOTH AND GROOVED SEALS

The objective of the theoretical and experimental investigations is to check

the usefulness of the developed model for grooved seals. For this task predicted

and measured dynamic coefficients for grooved seals are compared. It is of further

interest to point out differences of leakage and rotordynamic coefficients for smooth

and grooved seals.

Geometry of the Test-Seals

The two seals which have been investigated are shown in fig. 9. Seal O is a

smooth constant clearance seal without any grooves, seal Q has eight parallel

grooves in the stator. The rotor elements are considered to be smooth. Both seals

have the following data: radius R = 23,5 mm, length L = 23,5 mm, constant clearance

= 0,2 mm. For the grooved seal the groove depth is HR = 0,5 mm with LG = 0,7 mm

and LL = 1,5 mm.

Test Rig for Seal Investigations

With the test rig shown in fig. 10 the leakage flow as well as the dynamic seal
coefficients can be determined by measurements. The cross section shows two seal

inserts integrated symmetrically in a very rigid housing. A stiff shaft, driven by

an ac-motor, rotates inside the housing and acts as the second part of the seal.

The hcusing is flexibly supported by eight beamlike springs and therefore a pure

lateral motion relative to the shaft is specified. In the operating condition water

with 30°C is entering the housing in the center, flows throu_nthe two test seals and

is exiting the housing at both ends.

To characterize the fluid state several pressure and temperature pickups are

distributed at the test apparatus. The fluid velocity, determined from the mass flow

rate, was measured in the supply line. The housing can be excited by test forces,

which are measured by a force transducer. To detect the resultant motion of the

housing relative to the shaft eddy current-pickups were used.
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For the steady-state leakage measurement the housing is fixed in a centered

position and the mass flow rate and the pressure drop are taken by measurements.

With this test data and additional informations concerning the fluid the leakage flow

and the empirical turbulence coefficients can be found.

The experimental determination of the seal dynamic coefficients works with a

parameter identification procedure. In the measurement step test forces are applied

to the housing in radial direction and with the measured relative motions between

the two seal surfaces mobility frequency response functions can be calculated by

Fast Fourier Transformation. Corresponding frequency response curves of a seal test

rig-model are fitted to the measured functions by variation of the seal dynamic coef-

ficients. The identification procedure is described in more detail in ref. 4,5.

Leakage Performance

To compare the leakage flow of different seal stators the leakage coefficient

C L is defined as follows

/ Ap
6 : C L 2_R 2 /___E_O (22)

is the volumetric steady state flow rate measured at the test rig and AP the cor-

responding pressure drop. C_ is a nondimensional relative measure of the leakage

expected trough seals with _he same radius. Fig. 11 illustrates measured values CL
for the two seals without grooves and with grooves. The grooved seal Q has a

leakage coefficient, which is about 15 % lower than that of seal Q without grooves.

Both leakage coefficients increase slightly with the pressure drop AP.

Empirical Turbulence Coefficients

In the described analysis the friction factors XR, _ , Xs- were characterizedin terms of the empirical turbulence coefficients (eqV I_ The_e empirical coef-

ficients have to be determined from static test data before a theoretical prediction

for the seal dynamic coefficients is possible. Leakage rates and pressure gradients

are measured for this task. The steady state axial pressure gradient is described

by eq. (17)

P V2
(o E + Osz )

(17)

With the measured pressure gradient, the velocity _ and the density pthe combined

o-values in parantheses can be calculated. We start with the smooth seal configu-

ration and suppose that oR can be applied for both the smooth rotor and the smooth

stator. From eq. (17) we obtain 2.o R and the friction factor XR, respectively. The
second test is carried out with the"smooth rotor and the grooved stator. From the

measured quantities for this case first of all only the combined friction factor

(o + o ) is known. With the value o_ from the first test oo and the corresponding
kR ca_%e calculated. Fig. 12 shows%he two friction facto_zxR and X _ in dependence

th%Zaxial Reynolds number R . The grooved seal Q has approximately _e double

friction factor compared toa_he smooth stator of seal
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From the X versus %0 data the empirical turbulence coefficients n , mR,are calculated with least square procedure, based on equations (_). nsz'

The following values were obtained (fig. 14):

nR : 0,062 ; m R : - 0,22

n = 0,058 ; m = - O,13
SZ SZ

(23)

Concerningrelevant, the values nso, mso, we assume, that the smooth surface constants are

Dynamic Coefficients, Influence of the Groove depth

With the presented analysis we can now calculate the dynamic seal coefficients.

The numerical procedure is applied to determine especially the stiffness and damping

coefficients K, k, C, c for seal Q in dependence of the rotational speed and the

average groove depth. The axial Reynolds number R is kept constant in this in-
ao

vestigation. Besides the seal geometry (fig. 9) further input data are as follows:

Fluid data for water with 30°C

Axial average velocity V = 16,46 m/sec

Entry swirl %o= 0,2 P_0

Inlet pressure loss _ = 0,5

Describing the friction behavior, the empirical coefficients from (23) are used

(fig. 14).

To point out the influence of the groove depth, different values of H_* are

assumed (figs. 13,14). Taking the average depth from a geometrical approximation

(sum of the upper areas equal the sum of the lower areas) we obtain H_* _ 0,1 mm.

The selected values for the calculations are H_* = O; 0,1; 0,2 mm. No_e that the

empirical constants are held constant in this mnvestigatlon.

Fig. 13 illustrates that the direct stiffness and damping as well as the cross

coupled stiffness are reduced by H_*, there is a weak influence to the cross coupled

damping. An increase of HR* from O_to 0,2 mm reduces K about 50 Z and C about 37 Z,

respectively.

In Fig. 14 the direct stiffness K and the direct damping C are compared for the

two seal types (D and _ All presented values are related to the coefficients K

and C of seal (_ without grooves. The results correspond to R = 8419 and a rota-ao

tional speed 4000 rpm. All other data are the same as in the example before. Starting

with the reference seal Q with empirical constants for smooth surfaces the stiff-

ness ratio as well as the damping ratio are equal to I by definition. Seal Q with

grooves has other constants (fig. 14). If we consider only this influence (change in

friction) and keep the average groove depth constant (HR* = 0), direct stiffness as
well as damping increase to 1,12 and 1,19 respectively. Taking now the empirical

values of seal Q constant, an increase of HR* reduces both stiffness and damping,
as was shown already in fig. 13. If we compare with corresponding measurement re-

suits, we recognize that the calculation with HR* = 0,1 mm yields good results for
stiffness but 15 % too high values for the damplng.
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DynamicCoefficients, Comparisonof Test Results
and Theoretical Results

As described before the dynamic seal coefficients can be measuredat the seal
test rig. For one working condition with constant rotational speed, axlal velocity
and constant fluid temperature four frequency response functions are measuredby
exciting the dynamic seal test rig and picking up the response in the two directions.
A computer takes over the measureddata and calculates the dynamic seal coefficients
by meansof a least square identification procedure {references 4,5). Several meas-
urements were carried out for different rotational speeds but constant axial Reynolds
numberR and fluid temperature. Fig. 15 illustrates for the two seals with andao
without grooves the identified stiffness and damping coefficients versus the rota-
tional speed. The test results show, that neither the direct coefficients nor the
cross coupled coefficients are equal in amount, as expected from theory (eq. I).
Each of the two coefficients, which should be equal in magnitude, are shownin the
diagram as found out by the identification process. The scatter of the measurement
points is very different. The addedmass terms are muchhigher than predicted by
theory. They are not presented in the diagram.

The fitting curves show the tendency as expected from theory, a slightly para-
bolic decrease of K with the rotational speed, constant direct damping and a linear
increase with the rotational speed for the cross coupled terms k and c.

Seal O without grooves has higher direct stiffness and damping terms compared
to seal _ with grooves. The cross coupled stiffness of seal Q is also greater
than of seal Q . There is no clear difference in the cross coupled damping values.
Basicly, the different measurementresults for the two seal types show the expected
influence of the grooves (see also fig. 13), reducing especially K, C and k.

In fig. 16 the identified stiffness and damping coefficients of seal Q are
refered to the corresponding predictions from the grooved seal model. There are two
parameters in the model, which can be changed slightly, to obtain a better correla-
tion betweenmeasuredand theoretical results: the average groove depth Ha* and fluid
entry swirl at the seal entrance. It was found, that values for the entry swirl be-
tween U__o = O,1R_ for low rotational speeds ana U@ = 0,3 _ for higher rotational
speeds and a average groove depth of HR* = O,1 mm Were best suited to fit the theo-
retical values to the test results. Th_ predicted direct stiffnesses are slightly
lower, the direct damping values about 20 %higher than the measured quantities.

The influence of the axial Reynolds number for a constant rotational speed of
4500 rpm is pointed out in fig. 17. Measuredas well as predicted parameters show
the similar trend for the different seal coefficients. K is increasing in a para-
bolic curve, C dependslinear on the Reynolds numberand the cross coupled terms k
and c behave indifferent.

Finally in fig. 18 the seal model predictions for the two seal types are com-
pared, in accordance to the measurementresults in fig. 15. The results are as fol-
lows, an expected decrease of both stiffness coefficients from seal Q to seal
but a weak difference of the damping parameters for the two seals.
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CONCLUDING REMARKS

A theoretical model, based on Childs finite length solution, is presented to

determine rotordynamic coefficients and the leakage flow of seals with parallel

grooves in the stator. Calculated and measured stiffness and damping values for the

investigated seal with eight grooves show, that the developed model is useful for

the prediction of this seal type.

Concerning the pump efficiency seals with grooves have the advantage of a lower

leakage flow compared to the smooth seal. But the direct and cross coupled stiffness

coefficients as well as the direct damping are reduced in the grooved seal configu-

ration. This has to be considered when rotordynamic problems are important.
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APPENDIX A: COMPLETE BULK FLOW EQUATIONS
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APPENDIX B: PERTURBATION COEFFICIENTS

_.s_ _ os_ =

_7ose --

I
& : g+ W_._j¢'_+'',-)j_

The parameters De , Da, Dei,Dai are very extensive and therefore not presented.

If desired, they can be obtained by the authors.
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Figure I0. - Seal test rig
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In this paper the dynamic characteristics of splral-grooved seals are
theoretically obtained by using the Navler-Stokes equation. First, with the

inertia term of the fluid considered, the flow and pressure in the steady state

are obtained for the directions parallel to and perpendicular to the groove.

Next, the dynamic character is obtained by analyzing the steady state by ana-
lyzing the labyrinth seal.

As a result, the following conclusions were drawn:

(1) As the land width becomes shorter or the helix angle decreases, the

cross-coupllng stiffness, direct and cross-coupllng damping, and add mass
coefficients decrease.

(2) As the axial Reynolds number increases, the stiffness and damping

coefficients increase. But the add mass coefficient is not influenced by the
axial Reynolds number.

(3) The rotational Reynolds number influences greatly the direct and

cross-coupllng stiffness and direct damping coefficients.

(4) As the journal rotating frequency increases, the leakage flow

decreases. Therefore zero net leakage flow is possible at a particular

rotating frequency.

INTRODUCTION

High-performance pumps, (i.e., those operating at high rotating speed and
high pressure) are used in chemical plants, rocket engines, etc.. These pumps

sometimes yield nonsynchronous vibration that is induced by the journal bear-

ings or noncontactlng seals. The instability of rotors supported by a Journal

bearing has been studied very well. However the noncontactlng seal, which

sometimes induces a nonsynchronous vibration or instability to the pumps, has

not been investigated.
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The dynamic characteristics of some noncontactlng pump seals (the annular

plain seal, the tapered seal, and the stepped seal) have been theoretically

investigated by Black (refs. l and 2), Childs (refs. 3 and 4), and Yang et al.

(ref. 5), but there have been no investigations using the theory of fluid

dynamics on the parallel-grooved and splral-grooved seals. Childs studied the

parallel-grooved seal by using only a rough approximation. On the other hand,

the parallel-grooved labyrinth seal has been investigated by Kostyuk (ref. 6)
and Iwatsubo, et al. (ref. 7). For the investigation of the splral-grooved

seal, we studied steady-state characteristics from the viewpoint of leakage.

This study was based on investigations of the spiral Journal bearing; that is,

Whipple (ref. 8) presents a basic idea to analyze the characteristics of the

thrust splral-grooved bearing, Vohr (refs. 9 and lO) and Passera (ref. ll)

present an approximate method using creeping flow analysis (which assumes that
the groove number is infinitely large), and Zuk (ref. 12) analyzes the static

characteristics of the splral-grooved seal by solving the Navler-Stokes equa-
tion with a finite difference method. But all these analyses are for the

static characteristics and there are no investigations of the dynamic
characteristics.

This paper presents an analytical method to obtain the dynamic character-

istics by solving a Navler-Stokes equation with the perturbation method. First
the steady-state flow and pressure distribution in the axial direction are

obtained by considering the pumping effect due to the spiral groove. Then the

dynamic characteristics are obtained at the steady-state condition, and the

dynamic force is represented by the matrix form.

C Zo

D

F

H

I
S

L

L
g

Ll

k
lg

L
S

NN

P

AP

Q

SYMBOLS

mean clearance

seal diameter

flow induced force

thickness of fluid film

thread number

seal length

groove width

land width

L;/Lg

number of lands for one thread

number of land and groove sections

pressure

pressure difference

leakage flow rate
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R

R
a

Re

R
r

T

t

U

W

x,y,z

e

k

P

T

journal radius

axial Reynolds number

Reynolds number

circumferential Reynolds number

depth of ditch

time

circumferential fluid velocity

axial fluid velocity

coordinates (see fig. 2)

spiral angle

perturbation coefficient

divergent flow angle

friction coefficient

viscous coefficient

loss factor

coordinates (see fig. 2)

density

shear stress

Subscripts:

a

c

d

ex

f

g

in

J

l

axial direction

radial direction

ditch (mainly used for vortex in ditch)

exit

between clearance flow and cavity flow

groove

inlet

journal

land
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m

r

S

(T)

mean velocity

circumferential direction

casing

time mean

GOVERNING EQUATION AND MODELING OF SPIRAL-GROOVED SEAL

Governing Equation

Figure l illustrates the geometry of the splral-grooved seal. Under the

usual assumptions for problems of through flow across annull with fine clear-

ances, the continuity and momentum equations are represented as follows

(ref. 13):

Continuity equation,

BH + B (HUm) + _ (Hw m) =O

Bt _x _z

(1)

where um and wm are mean fluid velocity components in the tangential
and axial directions.

Momentum equation in the x-dlrectlon,

BUm Wm@Um }= H 9P +pH{ BUm + Um__ + _

@t Bx @z Bx

Ttr

H

0
(2)

Momentum equation in the z-dlrectlon,

pH( @"m + UmB_m + WmB'_m }= _H P + Tta[ II
Bt Bx @z Bz 0

(3)

Modeling

There are three kinds of splral-grooved seals, (1) those with the groove

on the journal (fig. l), (2) those with the groove on the casing, and (3) those

with grooves on both Journal and casing. In this paper the seal with the

groove on the Journal is analyzed. Figure 2 is an expanded figure of the

splral-grooved seal. Configuration parameters are indicated on this figure;

these are spiral angle _, land width L., groove width Lg, seal diameter

D, and thread number Is. These parameters are related as follows:
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_Dsina
L = _Dtana x L L = x ( 1 - L )

s g Is Zg

_Dsina

Ll - I x Llg
8

(4)

where Ls is number of lands for one thread in the axial direction and

Llg = L//Lg. For the analysis two coordinates are used: one is the
n-Y-C coordinate, which is used for the static analysis and the other is the

x-y-z coordinate, which is used for the analysis of dynamic characteristics.

For the analysis the following are assumed:

(1) The fluid is liquid and noncompresslble.

(2) Flow in the land in the n-directlon is assumed to be a flow between

two parallel plates, and flow in the groove is assumed to be a flow in a rec-
tangular cross section and is approximated to the flow in a circular tube.

(3) Flow in the C-dlrection diverges with the angle e and goes to
the next land.

(4) The vortex is formed in the _-dlrectlon of the groove. But the
heat energy is negligibly small.

(5) When the Journal deviates a little from the center, the streamline in
the groove deviates in the same manner.

DERIVATION OF SHEAR STRESS IN MOMENTUM EQUATION

The shear stress term of equation (3) is derived for the splral-grooved

seal. The friction coefficient of the annular seal is represented by a

Reynolds number (ref. 14). But it is very difficult to represent the friction

coefficient of the spiral-grooved seal in the same way because the groove is

spiral. So the friction coefficient equation derived by Hlrs (ref. 15) is used

in this analysis. The equation of the friction coefficient between two plates

is represented as

-0.2 5

_. = o.06s Re (5)

where the velocity used in the Reynolds number is the equivalent mean velocity
that includes the pumping action of the spiral-grooved seal. This equivalent

mean velocity is used to obtain the shear stress.

Land

The shear stresses of the casing and journal parts in the axial direction

(z-dlrectlon) T/sa,T/j a are represented by the formula for the flow
between two parallel plates,
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1 2 k
Tl8 a : - Tlj a =TO_la_Im Wlm H _o.2

= o.o68
la

Therefore the shear stress term of equation (3) becomes as

Ttal_ = Tlja - Tlsa

2

= -2, :_-=--pXlawlm

(6)

(7)

Groove

In the groove, flow is divided into two regions: the jet flow region and

the vortex region. The shear stress of the casing part of the jet region in

the axial direction _gsa is represented by the formula of the flow
between two parallel plates,

tw H _-o.2 s
1 w 2 _ = 0.066[ gm._____ (8)

Tgsa = "2"PXga gm ga

It is assumed that the energy loss in the groove vortex region is represented

by the friction loss between the clearance flow and vortex flow. Assuming that

the friction between the vortex and the Jet flow kf is O.l and that the
axial velocity component of the vortex Wdm is set to one-half of the jet

flow Wgm (ref. 16), the shear stress of the flow Tgfa becomes

_1 (W- )2_1 F2g_gfa 2 P_f gm Wdm 2 p0.25_ m (9)

Therefore the shear stress term in the groove is obtained from equations (8)
and (9) as

_ta = Tgfa - T - p0.25 - _ p_ wgsa 2 fWgm 2 ga gm

1 +0.25_f )w 22 P(_ga gm (I0)

DERIVATION OF STEADY FLOW AND STATIC CHARACTERISTICS

Axial and Circumferential Velocity of Steady Flow

As described before, the n-Y-¢ coordinate system is used for the ana-

lysis of static characteristics. References lO and II describe investigations

of the static characteristics of the splral-grooved seal. In these investiga-

tions, the residual seal pressure is obtained when seal leakage becomes zero

because of the pressure induced by spiral pumping action. This residual pres-

sure is a function of the seal configuration, and the seal coefficient can be

represented by the nondlmensional form. Boon et al. (ref. 17) obtained the
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seal coefficient of laminar flow, and Morl, et al. obtained the same by exper-

iment. The seal coefficient S.C.lamina r for the laminar flow is

S. Co
laminar = _t   o)lt

3(1+tan2a)+Llg(l_Llg) (K'-I) 2tan2a
-- (ll)

Llg(1-Llg) (< 3-I) (K-I)tans

K

where K = Hg/H e. THe pressure induced by the spiral pumping action
APlaminar for the laminar flow is

6_RmL Ll (1-Llg)(K3-1)(_-1)tane

APlaminar C1 oa K3(1+tan2_)+Llg(1_Llg )(K3_1)2tan2_

(12)

Vohr (ref. 10) compared the seal coefficient for turbulent flow with that for

laminar flow by experiment. He obtained the pressure ratio Ct of the seal
coefficient of the turbulent and laminar flow as

APturbulent o.778

Ct = = 0.0158 R r (13)

APlaminar

Then the pressure aPturbulen t induced by the spiral pumping action in tur-
bulent flow is

APturbulent

O. 085 I_R_LR °'77s
r

c 2
lo

Llg(1-Llg) (K3-1) (K-1)tan_
x (14)

<' (1+ tan2_) +Llg(1-Llg) (<'-1) 2ta_

Since the pressure difference equation (14) acts to resist the pressure differ-

ence in the seal AP, the pressure difference in the seal becomes smaller than

the pressure difference between both seal ends. This pressure difference is

called the apparent pressure difference AP'; that is,

AP" = AP - APturbulen t (15)
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This apparent pressure difference acts on the seal and on the fluid flow in the
seal. This flow is separated into n- and C-dlrectlons and the fluid veloc-
ities in each direction and in each part are derived in order to calculate the
dynamlc-flow-lnduced force in each stage. Then total force is obtained by sum-
ming up the lateral force of each stage.

Fluid velocity parallel to groove direction for land. - The relation

between the pressure and velocity within the two parallel plates is also con-

sidered in the land region;

AP" 1 2 + I _ 2L
= _ P(l+_lnin)Wlno Y P_In w no" CloSinc*

I lo 2

+-_ p I Clo+ T wln °
(16)

The first term on the rlght-hand side of equation (16) represents the inlet

pressure loss. The inlet pressure loss of the land is larger than that of the

groove because the inlet clearance of the land is smaller than that of the

groove and because the fluid flows into the groove. The second term on the

rlght-hand side of equation (16) represents the pressure loss due to wall

friction. The third term represents the outlet pressure loss. The value k/n

is obtained using equation (5), and _/nln is the inlet pressure loss
coefficient, which is 0.5 for the first stage and is represented as follows
after the second stage:

Clqin = I+0.82462 - ( I+0.82461 )(H2/H I )2

61 = 1.95( wl0H I / _ )-0._3

62 = 1.95( wIoH2 / _ )-0.43

(17)

Therefore if equation (14) is Iteratlvely calculated so that Wln 0 in

function k coincides with W/nO in equation (16), the flow velocity of the
land WZn is obtained.

Fluid velocity parallel to the groove direction for groove. - Since the

groove is deep enough, the groove is considered to be a rectangular pipe and
can be approximated as a circular pipe. The equivalent radius of the rectan-

gular pipe MG (ref. 18) is

L (Czo+T)
,q (18)

MG = 2(Lg+Clo+T)

The friction coefficient of the turbulent circular pipe kd (ref. 18) is
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Therefore the apparent pressure difference 8P' is written as follows:

I L I

___ p (1+_ gnin)W2 + Igno -_- P XdW 2gn ____9_..o sina MG

(19)

I 11 Czo+T 12+--_ p Clo+2_ w2gno
(20)

In this equation the first term on the right-hand side represents the inlet
pressure loss of the groove. This inlet pressure loss is smaller than that of

the land, because the groove has a larger cross section than the land and

because the liquid flows mainly into the groove. The second term represents

the pressure loss due to wall friction, and the third term represents the out-

let pressure loss of the seal. After _gnln is obtained by using equa-

tion (17), the velocity in the groove in the n-dlrectlon wgnO is similarly
obtained by Iteratively calculating equation (20).

Fluid velocity perpendicular to groove direction. - The flow in the

C-directlon is derived by a method similar to that used to obtain the steady

flow of the parallel-grooved seal. Conventional evaluation of the loss of the

groove region was not clear. Yamada (ref. 19) obtained the friction coeffi-

cient of both the land and the groove by experimental methods. According to

his results, as the groove region increases in relation to the land region, the

friction coefficient increases as shown in figure 3. This friction coefficient

is represented by using the results of reference 19

-o.2_ 1-Llg
= 0.26.Re • 3.31 (21)

From the pressure drop relation the following is obtained:

l(Ll+Lg) = II Ll + lgLg (22)

where xI is a friction coefficient of flow between two parallel plates. Then

the friction coefficient of the groove kg is obtained from equations (21)
and (22),

lg = 0.28 Be -0"24 {3.31 L l 1-Llg )}1-Llg +-_g( 3.31 -1 (23)

Therefore the apparent pressure difference in the C-dlrectlon is obtained

by summing each stage of the land and groove, respectively,
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AP"
I 2

=T PC1+_in)wl_ o

2L
l2

l_Wl_o C
lo

L

+ (NN-I). .P),gWl_ o 2Clo I c I'1 lo 2

+-_ p I Clo+T_ wl_ °
(24)

In this equation the first term on the right-hand side represents the inlet

pressure loss of the seal, the second and the third terms represent the pres-
sure loss due to wall friction, and the fourth term represents the outlet

pressure loss of the seal. The term klC in this equation is defined in

equation (5), _Cin Is defined in equation (17) and NN Is the number
of the land and groove sections in the C-dlrectlon. Then the velocity in

the C-dlrectlon wZC 0 is obtained by a similar Iteratlve calculation.

Fluid velocity in circumferential and axial directions. - The steady-flow
velocity in the x- and z-dlrectlons is obtained from the previously calcu-

lated steady-flow velocities Wln o, Wgno, and wzc o by translating the coordi-
nate system as

(25)

where U'/o and U'g o are the velocities relative to the journal. There-
fore the absolute velocities In the circumferential direction become

- ; = V - u" (26)Ulo = V u o Ugo go

Leakage Flow Rate

Because the leakage flow rates of the land and groove are different, they

are considered separately. The leakage flow rate for the land is represented

by the relation of the cross-sectlonal area and velocity,

L _ [R+T+C

Q1 = I x c(JI_ lo Wlo2_rdr = _Clo {2(H+T)+Czo ILlgwl ° (27)
s jIYIs +T

The leakage flow rate for the groove is derived by separating the clear-

ance flow from the cavity flow. The leakage flow rate of the clearance flow
in the axial direction is represented as
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_0 g/* i n eLQgc = I WgoCgodZ

I+ +L tanS)w sina+ Cz°Lg w 1= Is Lg(2Clo g gqo tan_ l_o (28)

The leakage flow rate in the cavity Is represented by the axial component of

cavity flow as

1-Ll_ifR+T

Qgd= I x -8JR
s I Wgo2_rdr

= _(T+C_o) (2R+T+CIo) (1-Lzg)Wg o (29)

Therefore the total leakage flow rate for the groove is

Q g = Qgo + Qgd (30)

and the total leakage flow rate Q becomes

Q = Ql + Qg = _Clo 2(R+T)+Clo lg lo

L (2Clo+Lgtane)w sin_+ -l°-g w+Is g gqo tans l_o

+lT(T+Clo) (2R+T+Clo) (1-Llg,)Wgo (31)

Figure 4 shows the leakage flow rate for three types of seal and for
L/D = l.O, a rotating speed of 4000 rpm, and a radial clearance of 0.5 mm. The

leakage flow rate for each seal type increased as the pressure difference

increased. The leakage flow rate for the parallel-grooved seal was less than
that of the land seal. For the splral-grooved seal, if the spiral angle was

small, the leakage flow rate was less than that of the parallel-grooved seal,

but if the spiral angle was large, the leakage flow rate was greater than it
was for the parallel-grooved seal. For the splral-grooved seal, if the spiral

angle was small and the land width was large, or if the spiral angle was large

and the land width was large, the leakage flow rate decreased. For this reason

the groove is important for the screw pumping action.
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Figure 5 comparesthe calculated leakage flow rate with experimental
results (ref. 20). The groove was on both the Journal and casing in this
experiment. In the low-speed range the calculated and experimental values were
very close, and in the hlgh-speed range the leakage flow rate tended to zero
becauseof gas ingestion phenomenon.

DERIVATIONOFPRESSUREDISTRIBUTION

To linearize the equations, a flrst-order approximation is performed. It
is assumedin the llnearlzatlon that the center of the Journal coincides with
the center of the casing and that the journal perturbs close to the center.
Then the values of fluid film thickness H, pressure P, meanvelocity in the
z-dlrectlon wm, and meanvelocity in the x-directlon um are written as
follows:

H = C + e@ P = P + EP I0 0

W m = WO + EW I Um = Z_o + _ul

(32)

where Co, Po, Wo, and uo are the steady-state values and _, Pl, Wl, and

uI are the perturbations. The perturbation term in the circumferential

direction is neglected because the spiral angle _ is usually small and ul

is sufficiently smaller than wI.

Pressure Distribution in Steady-State

The steady-state pressure distribution is obtained by substituting equa-

tions (7), (lO), and (32) into equation (3) and taking the zeroth-order approx-

imation. The pressure gradient of the land in the axial direction is given by

@P O. 1 32
lo

@z Clo
___ /-o.2 5"I-"PW_2o Olo lo (33)

The pressure gradient of the groove in the axial direction is given by

@P ( Bwg ° Bw____o _ I p(X +0.25Xf)w 2 go
@z 2Cg ° ga go - p Ugo--_ +Wgo @z ) (34)

where Cg o and Wgo are functions of z and are represented as

Cg ° = Clo + ztanScosa

CloWlo

wg o = Clo+ztanBcos a
(35)

Therefore equation (31) is written as
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Z

go_P = - ] O(CloWlo) _sa PCloUgoWlotanec°sa
+ztan_cosa)z (36)

+ztanecosa)3 (Clo@z 2(Clo

where ksa is the apparent friction coefficient because its dimension is the

same as friction; that Is,

= _ + 0.25), -2tanecosa (37)ea ga f

Dynamic Pressure Distribution

The dynamic pressure distribution is obtained by substituting equa-

tions (7), (lO), and (32) into the equation of momentum (3) and taking the

first-order approximation. For the continuity equation (1) the flrst-order

approximation is also obtained in the same manner. The momentum equation in
the axial direction for the land is

_P
11

Bz _ _P I ICI w_q5 °2s+ p0.o 3,o . ,
Cl,° @z -_lo

1 ICZoWl -°2
+-- 033 lo. " Swl___ll.w2

2Clo pO" v Wlo lo

___E£
-Pl- _- +UZo _ +Ugo _..

The continuity equation is

(38)

@wz1 = 1 I_@-_t+Ulo _@J (39)
@z Clo

Pressure distribution is obtained by solving equations (38) and (39) simulta-

neously. Equation (39) is the first-order ordinary equation in W/l, and it

is solved by setting the boundary condition W/l = W/l(O) at z = O.

where

I

wZl = Wll(O ) --_--.fl(x,t). z (40)
Zo

fl(x,t) = _T +Ulo _--_
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Substituting equation (40) into equation (38) and setting the boundary condi-
tion P/1 = PZI(0) at z = 0 yield a solution of equation (38). In this

boundary condition P/l(0) is the perturbed pressure at the land inlet which
is obtained by a flrst-order approximation of the equation

AP = - (1/2)P_1Wm2 (41)

that Is,

Pll(O) = - P{lWloWl_(O) (42)

The term W/l(0 ) is obtained by neglecting the perturbed pressure at the

outlet of the land, (i.e., z = L//cos _, P/l(0) = 0). Then the dynamic

pressure of the land P/1 is obtained as

Coo>-,.,,",, o < o.) o.o,,,°,- pw I 0.165 l l _.SPLI- PWlo

•fZ(m,t).SPL2 + --_-IPWlo. fZ(x,t)'SPLE
Clo

I < _ -_z> (z,t) _PL2+_cz--op _ +_'zo f z
(43)

where SPL1 and SPL2 are as written In appendix A.

The momentum equation In the axial direction for the groove is

= - "C_" Bz - -C-_(_ga +0" 25_f)WgoWgl
go go

+._g_ go x_+ c-_-°" _-_z° c _z
go go

The continuity equation is

t go _x

@w @C
+w .,--_ + C

g_ oz go @z

(44)

(45)
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Substituting equation (36) Into equation (45) and setting the boundary condi-

tion Wg1 = Wgl(O) at z = 0 yield the solution of equation (45):

CZo

Wgl _ Wgl(O)'Clo+ZtanScos_

ztanBcos_

C_o+ZtanBcos _.f g(z, %) + (._lOC_o+Ztanecos_) z

(46)

where

fg (=, t) = -FE + g o-_-_-

Substituting equations (36) and (46) Into equation (44) and setting the bound-

ary condition Pgl = Pgl(O) at z = 0 yield the solution of equation (44),
where Pgl(O) Is the pressure loss at the inlet of the groove: that Is, the
outlet loss of the land. The outlet loss of the land Is represented by

!p_2w2APze= = 2 lo
(47)

where _2 is the outlet loss coefflcient

CZ ° )2
_2 = 1-C_o+Lgtan8

(48)

The first approximation of equation (47) Is represented as

Pgl (Zn) = -P_2WlOWgl (Zn)

The term Wgl(O) Is obtained by neglecting the perturbed pressure at the

groove outlet; that Is, z = Lg/cos _, Pgl = O. Then the dynamic pressure
of the groove is obtained as

PCloWlo sa
P = - .¢'SPG3
gl 6tanScos_

PCl°wl° *" t) SPGI
tanOoos¢Ig(z, "

(49)

w=
PClo lo sa

m

tanScos¢

PCzoW loXsa

_,.sPcs + ( f g (=, t). sP_7tanOoos_) z
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PWlo
-(tanScos_) fg(x,t)" SPG8

P C_ t _xlfg(= t)'SPG9+ (tanScosu) 2 +Ug o
(50)

where SPGI to SPG9 are represented in appendix B.

DYNAMIC FORCE

The small displacements in the X- and Y-dlrectlons at the center, AX

and AY respectively, are as follows:

e_ = - AX oos@ - AY sin@ (51)

The flow-lnduced forces in the X- and Y-dlrectlons at the beginning of a land

Cn, at the beginning of a groove ¢n+I/2, and at the beginning of the

next land section Cn+l are represented by equations (52) and (53).

8 Cn+_ Z/°°Sa

ex : - n_=1 jC. [jcz/cosa-R(¢-¢ n)ta.a

isJ; /co8_
• g eP dz

+ Ls 0 gl
+(L 8. I -1) fLz/o°8e

8 Jo £Pll dz

f L l/oosa-B (¢-@n) tana zl_Pllez d
0

x RcosCd¢

+fCn+I I[Lg/C°s_ eP iy,"

J_.+ ,/2[JLg/c os_-R (_-¢n+ I/2)tan_

sf_Ol/0°8_÷ Ls. I " _PZl dz

PL /oosa

• I -l)_O_+ (L8 8 e._gI dz

÷f_g/cos_-a C¢-@n+ i/2)tana _}_P_lez d (52)
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Fy = - _ l/cosa-R(_-_n)tanan=1 Cn

cPzlin dz

Lg/oosa• I _P
+ L s SjO gl

dz
+(L s. Is-l)/L1/o°8eO cpll dz

+/_ z /cosa-a ( @-@n) tana z}CPzlex d × RsinCd¢

+ @n+1 ILg/e°sa ¢p

J_n+YzjLg/OOSa_R(___n+l/2)tan a glin

_z

I l Ll/c°sa _L /COSOL
• cP d_ +(L s. I -I) g+ L Sdo zl s do

_z

0 g
x Rsin_d_ (53)

This force may be represented in the following matrix form:

FX =

Fy J
KXy

Kyx Ky

X

+

Y

MXX
+

Myx

MXy

Myy]
(54)

The following coefficients are obtained from equations (52) to (54). The
dynamic coefficients are different for the land and the groove.
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tc }lo 0.166 z°wl
KXX1 2el ° CI ° _ "ISPL1 + SPL2 = Kyy I

P_U loW lo
KyX1 - C

lo [ [Cl°w °._-°'2s ]- I-!--o.o_,--_ z '_seL2 + _seL1
4Clo = -KXy _

P_Ulo p_R
Cyx I = + _'ISPL2 = -C

Clo XYI MXX l = - 2Cl------o"ISPL2 = Myy z

_YXI = MXY1 = 0

(55)

pITR Clo lo _
KXXg - 2 I .ISPGGtanBoose _ 8a.iSPG_ +C_Wlo sa

+
2 1 Kyygtaneoos

- P_Cl°wl°Ug° ISPG1- sa
Kyxg tanSoosa tan Boos •ISPG7 +CI-!--,ISPG8]=

lo J -ICx_'_

I X
P_RCl°W l° SPGI 8a

CXXg - tanOco8e tanOcosa
1--!-- I CyygISPG7 + Ci ° ISPG8 =

Cyxg -

2p_u
go

(tanScosa) 2" ISPG9 = -Cxyg

P_R
(tanOcosa) 2 ISPG9 = Myyg Myxg = MxYg = 0

J

(56)
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where ISPL2 to ISPG9are represented in appendix C.

The coefficient matrix represents the summationof the coefficients of the
land and the groove.

NUMERICALEXAMPLE

Data for the seal model are shownin table I. Figure 6 shows the relation
between the axial Reynolds number(pressure difference between the inlet and
outlet of the seal) and the spiral angle _, where L/D = l.O, rotating speed
Is 3000 rpm, and pressure difference between inlet and outlet Is 0.49 to
4.9 MPa. As Reynolds number In the axial direction increases, Kxx, Kyx_ Cxx,
and Cyx increase, but Mxx Is almost constant. For the 3-thread 2.6
splral-angle splral-grooved seal and the 20-thread 17.66° splral-angle spiral-
grooved seal, the dynamic coefficient decreases as the spiral angle decreases.

Figure 7 shows the effects of the Reynolds number in the axial direction

and the ratio of the land width to the groove width. It Is known that as the

land width increases, the coefficients Kxx, Ky x, Cxx, CyX, and Mxx increase

and that, If the land Is narrow, the spring coefficient Kxx becomes
negative.

Figure 8 shows the effect of the circumferential Reynolds number for two

kinds of splral-grooved and parallel-grooved seals, where L/D = l.O, the pres-

sure difference between the inlet and outlet Is 0.49 to 4.9 MPa, and rotating

speed Is 2000 to 8000 rpm. Coefficient Kxx of the splral-grooved seal shows

a negative value for a low circumferential Reynolds number, but that of the
parallel-grooved seal does not show a negative value until a high circumferen-

tial Reynolds number Is obtained. The reason is that the pressure difference

between the inlet and outlet of the spiral groove seal affects the circumferen-

tial velocity; that Is, the pressure difference and the hlgh rotating speed

induce the pumping action, and the apparent pressure difference becomes small.

The characteristics of the coefficients Kxy and Cxx can be illustrated in

the same way. The values of the coefficients Kyx, Cxx, Cyx, and Mxx for the

splral-grooved seal are larger than those for the parallel-grooved seal.

CONCLUSIONS

From thls study of the dynamic characteristics of noncontactlng spiral-

grooved seals, the following conclusions are drawn:

I. Except for Kxx, coefficients become small as the spiral angle and
the land width decrease.

2. As the axial Reynolds number increases, coefficients Kxx, Kyx, Cxx,

and Cyx become large but Mxx remains constant.

3. As the circumferential Reynolds number increases, Kxx

and Cxx increase once and then decrease, Cyx increases, and
almost constant.

decreases, Ky x
Mxx Is
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4. The coefficient Kxx becomesnegative when the circumferential
Reynolds numberis large and the axial Reynolds number is small.

5. Leakageflow decreases as the rotating speed becomeslarge. If the
spiral angle is small, leakage flow decreases as the groove width becomes
large, and if the spiral angle is large, the leakage flow decreases as the
groove width becomessmall.

6. Comparingthe coefficients of the splral-grooved seal with those of the

parallel-grooved seal, yields the following conclusions:

a. Kxx of the splral-grooved seal is smaller than that of the

parallel-grooved seal.

b. Kyx and Cxx of the splral-grooved seal are smaller (larger)
than they are for the parallel-grooved seal for low (high) circumferential
Reynolds numbers, respectively.

c. CyX and Mxx of the splral-grooved seal are larger than they
are for the parallel-grooved seal.

d. Leakage flow of the splral-grooved seal is larger (smaller) than

that of the parallel-grooved seal for low (high) rotating speeds, respectively.

APPENDIX A

ql = PWlo_l
I pw 033 l°wl

2Clo lo O" v " cosc_

ql.1 = PWlo_

ql2 IC l Wlo_ °'2sI pw OZ3
2C1--'-"° lo O.

sPcl : . - qz2""

SPL2 = z

ql

174



APPENDIX B

-- C +L tanO
Cgl lo g

qg_ = PWlo(1-C.l,o/Cg.1)=

PC_oWlolsa

qg2 = - 2tanBoos_

1 q + qg2 C om = gl g - C--_o

SPGI = I/Cg o - I/Clo - m.Kl

SPG2 = I/C2go " I/C_o- m.K_

- _l - re. K3SPG3 = 1/CSg o 1/C o

SPG4 = Zn(Cgo/Clo) - re.K4

. - re.K5
SPG5 = Cg o Clo

I Clo

sPc8 = -TsP_2 + _-- sPG_

C
lo

SPG7 = -SPG_ + T
SPG2
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SPG8 = Clo. SPGI + SPG4

SPG8 = -C .SPG4 + SPG5
lo

K1 = :/Cg I - I/Clo x_--IIc_1-I/C_o

K4 = Zn(Cgl/Czo)

K5 = Cg I - CZo
K6 = C 2 - C _

gl lo

K7 = qgl/qg K8 = q g2/q g

APPENDIX C

= -q--_ \008_I

K8"KI) LK4 K8"KI z [ ] +K?'K!- -_= g
ISPGI = tanBcos_+tanSoosu-_Clo Clo oos_

ISPG2
K1 K8"KI.K2

=-tanOcosa + tanooosa (C___ K8. K2\ L
, g

lo+K? .K2-- 717 )oosa

ISP G 3
K2 K8.KI.K3

= -2tanOoose tanScose
KS.K3_ g

._(;Z.O C08_
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I lln(-Cgl-cClo._E51 KS'KI"K4ISPG4 = t-anScos_ cgl / lo j -tanScos_

_ llnC_o+ET.. 4+K8" K4_ Lg

ISPG5 = KS X8.K1.K5 IC _8 _5_ Lg_tanecosa-tanecos_" _o +K?" KS+_lo ] cos---_

ISPG6 = - I-!-ISPG2 + Cl---qISPG3
2 3

CZ° ISPG2
ISPG? = -ISPGI + --_

ISPG8 = Clo ISPGI + ISPG4

ISPG4 + ISPG5
ISPG9 = -Czo
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TABLE I. - DATA FOR NUMERICAL CALCULATION

Working fluid .............................. water
Fluid temperature, K ........................ 293.15

Density, p, Kg/m 3 ......................... 9.982x102

Viscosity, _, mPa s .......................... 1.009

Kinematic viscosity, v, m2/s .................. l.O06xlO-6
3ournal radius, R, mm .......................... lO0.O

Seal radial clearance, CZo, mm ...................... 0.4
Seal length, L, mm ........................... 200.0
Groove depth, T, mm ........................... 1.18

Helix angle, _, deg ....................... 1.30 to 17.66

Journal rotating frequency, N, rpm ............... 2000 to 8000

Pressure difference, AP, MPa ................... 0.49 to 4.9

_.

V////////////A
Figure I. - Splral-grooved seal.
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Figure 2. - Illustration of splral-grooved seal.
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COMPARISON OF HIRS' EQUATION WITH MOODY'S EQUATION FOR DETERMINING

ROTORDYNAMIC COEFFICIENTS OF ANNULAR PRESSURE SEALS_

Clayton C. Nelson and Dung T. Nguyen

Texas A&M University

College Station, Texas 77843

The rotordynamic coefficients of an incompressible-flow annular pressure seal were

determined using a bulk-flow model in conjunction with two different friction factor rela-

tionships. The first, Hirs' equation, assumes the friction factor is a function of Reynolds

number only. The second, Moody's equation, approximates Moody's diagram and assumes

the friction factor is a function of both Reynolds number and relative roughness. For each

value of relative roughness, Hirs' constants were determined so that both equations gave

the same magnitude and slope of the friction factor. For smooth seals, both relation-

ships give the same results. For rough seals (e/2Ho = 0.05) Moody's equation predicts

44% greater direct stiffness, 35(_ greater cross-coupled stiffness, 19% smaller cross-coupled

damping, 59% smaller cross-coupled inertia, and nominally the same direct damping and

direct inertia.

NOMENCLATURE

C, c = direct and cross-coupled damping coefficients

D -: diameter

e = surface roughness height

F_,F. = components of the seal reaction force

f = Friction factor

H = seal clearance

K, k = direct and cross-coupled stiffness coefficients

L = seal length

M, m = direct and cross-coupled inertia coefficients

m,n = Hirs' constants

p = pressure

Ap -- pressure drop across the seal

R = Reynold number (= 2pVH/#)

r .... seal radius

t = time

Uz, Uo = fluid velocity in the z and 0 direction

V = fluid velocity

X, Y = rotor displacement from its geometric center
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Z,O

#

P

cu

= axial and circumferential seal coordinates

= eccentricity perturbation

= viscosity

- density

= shaft angular velocity

0,1

x,y

s,r

z,O

Subscripts

= zeroth and first-order perturbations

= rectangular coordinate directions

= shaft and rotor

= axial and circumferential coordinate directions

INTRODUCTION

The design and safe operation of today's high-performance turbomachinery require

accurate predictions of the hydrodynamic forces developed by annular pressure seals. For

small orbital motion of the rotor about its geometric center, the hydrodynamic forces

are quantified by specifying a set of linearized rotordynamic coefficients as shown in the

following equation.

Fy K y + (1)- = -c C 1) +- -rn M

In this equation, (X,Y) define the motion of the seal rotor relative to its stator;

(F_, Fy) are the components of the hydrodynamic reactive force acting on the rotor; and

(K,k), (C,c), and (M, rn) are stiffness, damping and inertia coefficients respectively.

Extensive efforts have been made in the last two decades to theoretically predict,

and to experimentally measure these rotordynamic coefficients. Lomakin [1] first demon-

strated and explained the characteristic "hydrostatic" stiffness of annular seals for a small

displacement from the centered position. Most of the subsequent theoretical developments

have been made by Black, Jenssen, Allaire, Fleming, Childs, and Nelson [2-16]. The most

recent of these developments by Childs [11-14] (liquid seals) and Nelson [15,16] (gas seals)

include the effects of fluid prerotation, convergent-tapered geometry, and different surface

roughness treatments for the stator and rotor. Both of these analyses proceed from a single

set of governing equations which are based on Hirs' turbulent bulk-flow model [17,18].
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Comparison between theoretical and experimental results shows moderately good

agreement. However, the theory generally tends to underpredict the experimentally mea-

sured direct stiffness. Furthermore, this underprediction appears to get substantially worse

as the relative roughness, e/2Ho, of the seal increases. This has been found to be true

both for liquid seals [13,14,19] and for gas seals [22]. There is, however, a specific need

to accurately predict rotordynamic coefficients of seals with very rough stators and/or

rotors. To retard leakage, soften the effects of rub, increase damping, and decrease the

destabilizing effect of the cross-coupled stiffness, various kinds of intentionally roughened

surfaces are being tested and used in liquid and gas seal designs [14,16,23].

Failure of the analysis to predict the correct stiffness may, in part, be due to inade-

quacies in Hirs' equation for the friction factor. For a given set of Hirs' constants, Hirs'

equation can accurately reflect the change in the friction factor for small changes in the

Reynolds number, but has no functional dependence on the relative roughness. Neverthe-

less, the relative roughness does change in the circumferential direction when the rotor is

displaced from its centered position.

The results presented in this paper compare the theoretical rotordynamic coefficients

obtained by using a bulk-flow analysis in conjunction with two different friction factor

relationships. The first relationship is Hits' equation. The second, Moody's equation,

assumes the friction factor is a function of both Reynolds number and relative roughness.

GOVERNING EQUATIONS

Figure 1 illustrates the basic geometry and coordinate system used for the annular

pressure seal. Using a bulk-flow model and the control volume shown in Fig. 1, a complete

derivation of the governing for compressible flow is given in reference [15]. For incompress-

ible flow, these equations reduce to the following form.

OH 10(HUo) O(HUz)--+ + -o (2)
Ot r O0 Oz

H Op

p Oz
Uz 1/2 Uz [U2z + (Co - rw)2] a/2 f_
2 (U2z ÷U2) f_+ 2

( O :z voOUz VzOVZ)+ H \-0_-+ r O0 + Oz

Igl

(3)



H Op

pr O0
uo (v_ + u_) _/_ (vo - r_)
2 f_ + 2 [U2z ÷ (Uo- rw)2] 1/2 fr

+H\--g-i-+ r O0 + Uz--g2_]

(4)

Hirs' Equation

In the governing equations, f_ and fT represent the friction factors relative to the

stator and the rotor respectively. Hirs' turbulent bulk-flow model assumes that these

friction factors can be written as:

f = nR m (5)

where R is the Reynolds number relative to the surface upon which the shear stress is

acting, and the constants n and m are generally empirically determined from static pressure

flow experiments. Substitution of the parameters for the annular pressure seal yields the

following equations for the friction factors:

2pH (U 2 + U_)1/2] m"f_=n_ (6)
g

2pH [U 2 + (Uo -- rw)2] 1/2 }mrfT=nr (7)
/Z

Moody's Equation

Figure 2 shows a simplified version of Moody's diagram. Moody produced the follow-

ing approximate equation for the friction factor [24].

f =0.001375 1 + 20000 b + _- (s)
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This equation gives values within +5% for Reynolds numbers between 4000 and 107

and values of e/D up to 0.01. For e/D > 0.01 , it significantly underestimates the friction

factor. Substituting in the parameters of the annular pressure seal, f_ and fr become:

f_ = 0.001375 1 + 10 _ + pH(U2z + U_)I/e (9)

 r=000137 /l+  04e ,10,11J3}-H + pH [UZz + (Uo - roe)z] U2
(10)

Solution Procedure

Assuming small motion of the rotor about its geometriccenter, the pressure, density,

axial velocity, circumferential velocity, and local seal clearance can be expanded in termS

of zeroth-order and first-order perturbation variables.

H = Ho + cH:, P = Po + cpl, Uz = Uz o @ ¢-Uzl, Go = Uoo 4- £Uol (11)

Substitution of these expanded variables into the governing equations (2-4) and ei-

ther (6, 7) or (9, 10) yields a set. of zeroth-order and first-order equations. The nonlin-

ear zeroth-order equations are numerically integrated using a bisection methocl to obtain

matched boundary conditions. The linear first-order equations are expanded from three

partial differential equations to twelve ordinary differential equations by assuming that

the shaft moves in an elliptical orbit. These twelve ordinary differential equations are

then numerically integrated using standard numerical integration techniques. A further

integration of the first-order pressures circumferentially and axially over a range of orbital

speeds yield the rotordynamic coefficients. Complete details of the solution procedure are

given in references [15] and [16].

RESULTS

Seal Parameters

To compare the results of these two friction factor equations, rotordynamic coefficients

were determined for a high-pressure water seal defined by the following parameters.
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Geometry

length:

radius:

nominal clearance:

nominal relative roughness:

L = 5.08 cm (2.00 in)

r = 7.62 cm (3.00 in)

Ho = 0.381 mm (15.0 mil)

e/2Ho = 0 --_ 0.05

Fluid Properties

density: p = 1000 kg/m 3 (1.94 slug/ft 3)

viscosity: # = 1.30(10) -3 N-s/m 2 (2.72(10) -5 lb-s/ft 2)

Operating Conditions

Reynolds number:

pressure drop:

shaft angular speed:

preswirl ratio:

Ro = 30,000

Ap = 3.5 --_ 7.0 MPa (508 _ 1015 psi)

w = 3000 rpm

u0(0, = 0.25

As indicated above, the stator and rotor nominal relative roughness, e/2Ho, was

varied from 0 to 0.05. To maintain a constant nominal Reynolds number of Ro = 30000,

the pressure drop, Ap, was increased along with the roughness. From Moody's diagram, it

can be seen that the friction factor varies from -_ 0.0056 to 0.018. This variation is shown

by the bold vertical line drawn on the diagram (Figure 2).

For each nominal relative roughness value, a new set of Hirs' constants was determined.

These constants were evaluated so that the magnitude and slope of the friction factor from

Hirs' equation matched that of Moody's equation. For example, the dashed line on Moody's

diagram shows the results of Hirs' friction factor for e/2Ho = 0.01.

Rotordynamic Coefficients

The resulting rotordynamic coefficients for the two solutions are shown in Figures 3 -

8. Results from Hirs' equation are shown by the dashed lines, and results from Moody's

equation are shown by the solid lines. For smooth seals (e/2Ho _- 0) both models predict

nearly the same values. This result can be explained by observing Moody's diagram. For

smooth surfaces, the friction factor curves are close together. That is, changes in relative
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roughness for a smooth surface cause only minor changes in the friction factor. Thus,

circumferential changes in relative roughness due to rotor displacement are not significant.

As the nominal relative roughness is increased, the most striking difference in the

predictions is for the direct stiffness and cross-coupled inertia coefficients. For rough seals,

use of Moody's equation results in predicted stiffness coefficients which are 44% greater,

and cross-coupled inertia coefficients which are 59% smaller., (Cross-coupled inertia terms

are, however, so small that their effect on rotordynamic calculations is rather insignificant.)

The physical explanation for the increase in predicted direct stiffness can easily be

seen from Figure 9. As shown, stiffness in annular seals is accounted for by the increase in

the axial pressure gradient on the near side of a non-centered rotor. When using Moody's

equation, the increased relative roughness on the near side results in a larger friction factor

then when using Hirs' equation. This in turn, leads to an even larger pressure gradient.

Finally, use of Moody's equation results in predictions which are 35% greater for cross-

coupled stiffness and 19% smaller for cross-coupled damping. Direct damping and direct

inertia predictions remain nominally the same.

CONCLUSIONS

As stated in the introduction, there is a specific need to accurately predict rotordy-

namic coefficients of seals with very rough stators and//or rotors. Annular pressure seals

are being tested and used which have sui_faces that are honeycombed, grooved, knurled, or

contain various sizes and shapes of holes and projections. The ratio of the height of these

surface irregularities to the clearance is often close to unity (i.e., e/2Ho _- 1.0). For these

rough seals, the theoretically predicted direct stiffness based on Hirs' equation has been

substantially smaller than the measured direct stiffness.

In this analysis, it has been shown that for rough seals, the use of Moody's equation

gives significantly larger predictions for direct stiffness than use of Hirs' equation. This

occurs even though the magnitude and slope of the nominal friction factors from the

two equations are the same. This difference can be explained by the fact that Moody's

equation is a function of both roughness and Reynolds number, while Hirs' equation is a

function of Reynolds number only. Thus, Moody's equation can account for the effect of

the circumferential changes in relative roughness on the friction factor of a non-centered

rotor.
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From these results, it would appear that reliable predictions of direct stiffness for

rough seals must be based on a more sophisticated model than Hits' equation. This does

not, however, imply that the Moody equation used in this paper is the answer. This

equation underestimates the friction factor given in Moody's diagram when e/2Ho > 0.01,

and the diagram itself gives no values for friction factors when e/2Ho > 0.05. Furthermore,

the equation does not account for the effect of size, 'shape, and spacing of large surface

irregularities on the friction factor. It is possible, however, that some type of modified

Moody's equation could be used. That is, for each type of surface irregularity, friction

factor relationships co'uld be determined experimentally and/or analytically. From these

relationships, a new set of Moody constants could be determined and replace those in

Moody's original equation.
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DESTABILIZING FORCE OF LABYRINTH SEAL

Hlroshl Kankl

Mltsublshl Heavy Industries, Ltd.

Takasago, Japan

Shlgekl Morll

Mltsublshl Heavy Industries, Ltd.

Hlroshlma, Japan

A great deal of research has recently been conducted to solve the subsyn-
chronous rotor vibration problems in hlgh-performance turbomachlnery. Partic-

ularly, the destabilizing effect of the labyrinth seal on compressors or

turbines has been investigated for many years (refs. l to 9). In spite of many
efforts the dynamic effect of the labyrinth seal had not been fully determined
from qualitative and quantitative points of view. But from our theoretical and

experimental work, we have determined completely the dynamic characteristics of
the labyrinth seal.

This paper presents the results of recent theoretical and experimental
works.

We developed a theoretical study and a numerical calculation program to
obtain the dynamic coefficients based on lwatsubo's perturbation method

(ref. 3) and 3enny's tangential momentum effect evaluation method (ref. 9).

The simplified formulation was programmed for practical design use. Qualita-

tive and quantitative evaluations of the computer program have been done in

several published works. Our experimental study also evaluated damping coef-
ficients and considered inlet swirl effects.

Experimental studies on the labyrinth seal have been performed to improve
blading efficiency and to analyze rotor dynamics. For example, the basic lab-

yrinth seal test was done in 1970 to verify Alford's theory, and static and

semlstatlc tests were performed to improve design, to reduce leakage, and to
evaluate cross-coupled stiffness. In 1984-1985, to confirm the phenomena, the

theoretical analysis of dynamic coefficients, and the swirl effect of the lab-

yrinth seal, we continued seal dynamic model tests. This paper presents pri-

marily the results of the dynamic test.

a,b

C

f

g

h

displacement

peripheral velocity

cross section of seal chamber

gravity acceleration

strip height

SYMBOLS
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L

1

n

P

q

R

RS

T

t

U'

U Im

U

W

6

ea 'eb

kN

P

I

T II

length of labyrinth seal

length of strip pitch

ratio of specific heat

pressure

mass flow rate in axial direction

gas constant

radius of labyrinth seal

absolute temperature of gas in seal

time

length of acting surface of shear (stator)

length of acting surface of shear (rotor)

peripheral velocity of labyrinth seal, RS-_

peripheral unit length, RS-_

radial clearance of seal

angular displacement

friction coefficient (stator)

friction coefficient (rotor)

strip flow coefficient

density of gas

friction shear stress of stator surface

friction shear stress of rotor surface

rotating speed of rotor

whirling speed of rotor

Subscripts:

a outlet

e entry

F strip

i seal chamber number or strip
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x axial

Z strip number

* steady state

THEORETICAL STUDY OF DESTABILIZING FORCE CAUSED BY LABYRINTH SEAL

To investigate the destabilizing force caused by the labyrinth seal, an

analytical model of the labyrinth seal was established for calculating eight
dynamic coefficients (four stiffness coefficients and four damping coeffi-

cients) considering inlet swirl effects.

Modeling the Labyrinth Seal

In the flow model of the labyrinth seal Kostyuk introduced one peripheral

velocity variable C In the core flow of each labyrinth chamber and developed a
simple equation (ref. 5). The developed analytical method uses the modified

Kostyuk equation on the labyrinth seal shown In figure I.

The following fundamental equations are developed for the differential
element of unit length showed In figure 2:

Mass Flow Rate Passing Through Strip

2 = 2 2 2 _ p_)qi Pi'Si'(Pi-i
(i)

Mass Flow Rate Rectified In Chamber

2_RsFi.qi = 2_Rsi" qei

2_RSFi+l.qi+l = 2_R si.qai

(2)

Continuous Flow Rate in Chamber

8(Pifi) + fi.B(PiCi)
8t 8W_ + (qai- qei) = 0 (3)

Circumferential Momentum in Chamber

B(PifiCi)Bt + fi" 3(PiCi2)Swi + (qaiCai-qeiCei)+_iUi' -TiUi' = -;"BP---!i_xawi
(4)

Equation of State

Pi = gpi'Ri'Ti

-hi
Pi = Pi = Const.

(s)
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These equations were established for each strip and chamber. And the inlet and
outlet conditions of the seal were given as follows:

Po = P,o = Pe

Pz = Ta

PZ = P*z = Pa

Co = C,o = Ce

To = Te
(6)

Method of Solution

To solve equations (1) to (5), we applied Iwatsubo's method (ref. 3), that
is, the perturbation llneallzed method, as follows. The following nondlmen-

slonal variables _, n, C, and _ were introduced as

Pi = P,i(l + _i), Ci = C,i(l + qi)

Cei = Ce,i (i + qei). Cat = Ce. i+l = Ce,i+l (i + De. i+l ) (7)

qi = q,i'(l+ _i). 6i = 6,i(i + _i)

and, assuming that the rotor is whirling along an elliptical orbit,

is represented as

ai bi

_i = 6,--T c°smt'c°s_ + _ sin_t-sin_ (B)

Rotor displacement a,,b, and angular displacement ea,@ b have
the following relation:

i-i i-i
(9)

a i = a, + 6a'Z _j b i =b, -9b. Z _j
j=l j=l

Then these equations were divided into the steady-state equations and the

dynamlc-state equations shown in table I. As the number of variables was

greater than the number of equations, the following two assumptions were made:

(1) Steady-State Tangential Momentum Parameter Ks

The parameter Ks, suggested by Jenny (ref. 9), is defined as follows:

Ce, i Ca, i - Ks.(Ce, i- C,i) (IO)

This parameter is the one most important to the destabilizing force and depends

on the labyrinth seal geometry.

(2) Dynamlc-State Tangential Momentum Parameter KD

In the dynamic state, a parameter KD, different from Jenny's

parameter (ref. g) as

Ks
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qei = Ko.qi (11)

These steady state and dynamic state differential equations yield to the alge-

braic linear equations with eight coefficients Kxx, Kxy, Kyx, Kyy, Cxx, Cxy,
Cyx, and Cyy by Iwatsubo's method (ref. 3).

And assuming that the rotor Is at the center of the labyrinth seal, the
coefficients satisfy the next condition

o Kxx = Kyy, Kxy = -Ky x, Cxx = Cyy, Cxy = -Cyx (12)

Numerical Analysis and Comparison Between Theory and Published

Experlmental Results

Two experlments on labyrinth seal destabilizing force have been published:
Wrtght's (ref. l), on the effect of bore taper; and Benckert's (ref. 12), which
clarified the effect of entry swtrl. First, the analytical results of using
the preceding method are compared with Wrtght's experimental results. The con-
figuration of the seal Is shown In figure 3. The calculated and measured
dynamic coefficient data are-shown in figures 4 and 5. The calculation was
performed with respect to the experimental data on the effects of taper bore.
The taper bore effect Is summarized tn table II.

The second step compares the calculated results wlth Benckert's experi-

mental results for the full labyrinth seal. As shown In figure 6, the calcu-

lated results and Benckert's experimental results are compared using Benckert's

nondlmenslonal variables K*O, E*0 as follows.

, Kxy

No = (pz-po).Rs. L (13)

E_ = Po 2 Po 2-_-Co /(Pz- Po + -_-Caxo) (14)

The calculation and experiment have a good agreement. The calculated entry
swirl effect Is also shown In table II.

EXPERIMENTAL STUDY OF SMALL LABYRINTH SEAL MODEL

A small labyrinth seal model was tested to qualitatively confirm labyrinth
seal dynamics. The experimental model Is shown in figure 7. The model casing

had four nozzles attached to the annular chamber of the labyrinth seal In the

tangential direction (ref. 7). The inlet swirl could be alternated by nozzle

selection for each test condition. The dimensions of the model labyrinth seal

are summarized In table III. The model was designed to demonstrate the occur-
rence of whirl at relatively low pressure.
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The maln test items are summarized in table IV. The tests measured system
damping for each test condition. The effect of shaft rotation is very small
because of the size of the model and the limit of the rotating speed. There-
fore most tests were preformed in nonrotatlng conditions. System damping was
measured by perturbing test working conditions. The free vibration decay was
measured for each test. The following results were obtained from this series
of tests.

Effect of Labyrinth Seal on Rotor Stability

Figure 8 shows the typical test results for the original straight seal.

System damping varied according to nozzle inlet pressure. The nozzle inlet

pressure represents the seal inlet swirl velocity. The seal inlet pressure was

about one-half of the nozzle inlet pressure.

The measured damping ratio tended to increase up to 0.2 kgf/cm 2, to

decrease as pressure increased, and to fall Into the unstable region for pres-

sure over 0.5 kgf/cm 2. The vibration waves In figure 8 clearly show the

change of system damping.

Effect of the Labyrinth Seal on Damping

Figure 9 shows test results at the no-swlrl condition for the original

straight seal. The damping increased with inlet pressure and the natural fre-

quency slightly decreased. Thls shows that the seal has a direct effect on
damping.

Effect of Tapered bore

Figure lO shows the test results for the simplified tapered-bore seal.

The clearances were changed for half the number of seal fins so that the seal
would simulate both a convergent and a divergent seal. For thls model the

convergent seal showed more stable characteristics than the divergent seal.

However, the differences between them were very small.

Effect of Swirl Breaker

To reduce the destabilizing effect of inlet swirl, two types of swirl
breaker were tested. The one had radial bypass holes and the other had anti-

swirl bypass holes. The results (fig. ll) show a significant increase in

stability limit for both cases, and wlth the antlswlrl breaker the stable con-

dition could be maintained to about four times the inlet pressure.

Comparison of Test Results wlth Calculated Results

Figure 12 shows the nondlmenslonal destabilizing effect (by Benckert's
method) for swirl test results and analytical values for conditions associated

wlth the original straight seal model and wlth tapered-bore seal models. The

figure shows fairly good agreement between the theory and the experiment for

both the qualitative and quantitative points of views.
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EXAMPLE OF APPLICATION

The method of calculating labyrinth seal dynamics was applied to solve

compressor vibration problems (ref. lO).

When the compressor was replaced by a new machine with improved perform-

ance the machine experienced severe unstable subsynchronous whirl over 90 per-
cent load. The stability characteristics were analyzed by the Mltsublshl rotor

dynamics program (ref. ll). The middle of figure 13 shows the stability graph

of this rotor system; the graph includes the labyrinth seal destabilizing
effects calculated by this work.

After lengthy discussions of the analytical results and the observed phe-
nomena, we decided on a countermeasure, the installation of a damper bearing.

A one-day shutdown of the compressor allowed the damper bearing to be installed

without unbolting the compressor casing. When the compressor was run with the
damper bearing, the subsynchronous vibration completely disappeared. The top

and bottom figure of figure 13 compare vibration records from before and after

damper bearing installation.

CONCLUSIONS

Our theoretical and experimental study of the destabilizing force of the

labyrinth seal confirmed the following dynamic characteristics:

I. The unstable vibration phenomena of labyrinth seals are clearly

demonstrated by a simple model rotor system.

2. The existence of the damping effect in labyrinth seals is confirmed in
the absence of inlet swirl.

3. For this model the tapered clearance of the labyrinth seal has little
effect on the destabilizing force.

4. The special swirl breaker showed a reasonable reduction of the desta-

bilizing effect of the labyrinth seal.

5. Application of the results of the stability analysis gave a reasonable

interpretation for actual turbomachlnery vibration phenomena.

REFERENCES

I. Benckert, H.; and Wachter, J.: Flow Induced Spring Constants of Labyrinth
Seals. I. Mech. E, Sept. 1980. (See also NASA CP-2338, pp. 189-212.)

2. Chllds, D.; and Dressman, J.: Testing of Turbulent Seals for Rotordynamlc

Coefficients. Rotordynamlc Instability Problems in High-Performance

Turbomachlnery, NASA CP-2250, 1982, pp. 157-171.

3. Iwatsubo, T.; et al.: Flow Induced Force of Labyrinth Seal. Rotordynamlc
Instability Problems in High-Performance Turbomachlnery, NASA CP-2250,

1982, pp. 205-222.

211



4. Kurohashl, M.; et al.: Spring and DampingCoefficients of Labyrinth Seals.
Proceedings I. Mech. E., 1980.

5. Kostyuk, A.: Theoretical Analysis of Aerodynamic Forces in Labyrinth
Glands of Turbomachlnes. Teploenergetlka, 1972.

6. Wright, D.V.: Air Model Test of Labyrinth Seal Forces on a Whirling
Rotor. ASME,Eng. Power, Oct. 1978.

7. Leong, Y.M.M. Salman; Brown, R.D.: Experimental Investigations of Lateral
Forces Induced by Flow through Model Labyrinth Glands. Rotordynamlc
Instability Problems in High-Performance Turbomachlnery, NASACP-2338,
1984, pp. 187-210.

8. Miller, E.H.; and Vohr, J.H.: Preliminary Investigation of Labyrinth
Packing Pressure Drops at Onset of Swlrl-Induced Rotor Instability.

Rotordynamlc Instability Problems in High-Performance Turbomachlnery, NASA

CP-2338, 1984, pp. 281-294.

9. Jenny, R.: Labyrinths as a Cause of Self-exclted Rotor Oscillations in

Centrifugal Compressors. Sulzer Technical Review 4, 1980.

lO. Morll, S.; Nishlmoto, K.; and Kankl, H.; et al.: On the Subsynchronous

Whirl in the Centrifugal Compressor. ICVPE, 1986. To be published.

II. Shirakl, K.; and Kankl, H.: A New Vibration Criteria for High Speed Large

Capacity Turbomachlnery. Proceeding of the Eighth Turbomachlnery

Symposium.

12. Wright, D.V.: Labyrinth Seal Forces on a Whirling Rotor. ASME,

AMD-VoI. 55, 1983.

212



TABLE I. - LINEALIZED EQUATION OF LABYRINTH SEAL

Circumferential Momentum Equation

f*i 8_i + f*i _ + f*___ii_RiTiT at Rsi _

• . 2 2 2 2
_ BR!TxP *i+l _ i+l 6 ,i+iCe*i+iR sFi+l

qe*iP*i C,iR2si

C*i._ _ 2f*iC*i aqi+ --6--; + Rsi a

_i+l

gRiTiP*i, 2 2
,iC e_iR_Fi )+L;_'_ .... 2 _i+16*i+iCe*i+iR_Fi+l+_62 ..

Me '_u*xA si

1 . • . . ui

2_2 _ ,._2
gRiTiP,i-I _ io*it,e_X_sFi

q e*iP *iC*i R2si

gRiTiqe*iCe*i+l

_i-i + P*i C*i qei+l

+ {_[uiIc*_I+_iu_lu_-c_'.-_l}n_-
gRi Tiqe*iCe*i

P*i C*i
qei

gRiTi

2qe*i P *i C *iRs2i
2 6 2 2 2

{_/i+l *i+l Ce*i+l_Fi+l (P,_i - P*'x+l)-Di 6,,iCe,iRSF_(P2c-i-P,_i)}

{a,Cos(_ +mt)+a, cos(':#_t)-b.cos(_ +_t)+b, cos(@-mt)}

+ --_- { -a, sin( Lp+oot)+a,sin(Lp -cot)+b,sin(_p +_t)+b.,csin (_-cot) }

+
gRiT_ 2 2 2 i

{_/i+l 6 2 2 ST_*i+l Ce*i+IRsFi+I (P*i - P*i+l) Zj
2 q_{iP *i C_'_xRs"i F--_

2 2 2 i-i
_/i 6"i Ce*iE SFi(Pei-i 2- - Pei) _q.£j}

j=l

{Sa cos( _ +_t)+ 8aCOS(lP -_t )- 8bCOS (_ +_t)+ 8bCOS(l_ -rot)

+ _ ( __i_lZj -Si£i ) {-easin(lP +cot)+ @asin( '_-_ t)+Sbsin( _p+cot )+8 bsin(_ -cot)}
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TABLE I. - CONCLUDED.

Steady State Equation

o Mass Flow Rate Equation

qi 2 2 2
- Pi-l- Pi

_ii 2_ i 2

o Continuous Equation

RSFiqi= RSiqei = RSFi+lqi+l

o Circumferential Momentum Equation

qe*i(Ce, i+l- Ce,i) +
i liui

2 gRiTi
P*i IC*i IC*i

1 llui
P*ilui C*il(ui - C'i) = 02 gRiT±

Dynamic State Equation

o Continuous Equation

2 2 2 2

f*i 8_i + C*if*i 8___ + C*if*i 8ri_ _ gRiTiP*i+]U i+16*i+iRSFi+l _i+l

n 8t Rsi-n 8_ Rsi-n 8_ qe, iP,iR2si

gRiTiP*i- 2 2 2 2 2 2 gRiTiP$ci_l 2 2 2
*iRsFi $i-i_ (_li+l_.i+iRSFi+l+_/i_ _':iRSFi)$i

qe.iR si qe.i P*iR2si

u gRiTi

2qe*iR*iR 2si

2 2 2 2 2 2 2

{;ii+l 6 *i+iR SFi+l (P *i-P *i+i)-_ i6,iRSFi (P*i -i-P_i )}

{a,cos(_# +_t )+a,cos (_ -cot)-b ,cos (_+wt )+b, cos (_ -wt )}

.tOni .

+--i--i -a, s in(_ +cot)+a, s in(_P-cot)+b,s in(IS+wt )+b,s in(D -rot)}

gRiTi
• 2

2q_'_iP*iRsi

2 2 2 2 i 2 2 - 2 2 i-i

{ _/i+16,i+iRSFi+l ( P *i - P*i+l) _q-£j- _i 6*iR SFi( P,i-I-P *i) 5Z.£j}
j=1 j=t

{ @a COS (I0 +c0t )+ea COS ( _0- wt )-eb cos (_+_t)+8b cos (_p-wt) }

i
to£i

+ _- ( _q-_j-Si _i ) {-ga sin(_+00t)+Sasin(_0-_t)+Sbsin(_)q_ot)+Bbsin(_-_t) }
j=l
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TABLE II. - SUMMARY OF CASE STUDY

Kxx

Kxy

Tapered bore seal

(Diverging - straight - converging)

Rigid

Destabilizing
for forward swirl

Cxx _ Stabilizing

Cxy Rigid for
forward swirl

Entry swirl

(backward - forward)

-,- A little rigid

(-) (+) Destabilizing
for forward
swirl

Positive and almost

independent of entry swirl

Positive and almost

independent of entry swirl

TABLE III. - SPECIFICATION OF TEST MODEL

Seal diameter, mm ............................. lO0

Seal radial clearance, mm ........................ 0.25

Height of seal fln, mm ......................... 2.75

Pitch of seal fln, mm .......................... 4.00
Numbers of flns ............................. 15x2

Inlet pressure, atm, absolute .................... l to 3.2

Discharge pressure, atm, absolute ...................... l

Critical speed, rpm ............................ 930

TABLE IV. - TEST ITEMS AND OBJECTIVES

Test items Objective

Original Swirl effect Effect of Inlet swirl

Rotation effect Effect of rotation of rotor

Clearance effect Effect of seal clearance of same configuration

Tapered Effect of convergent and divergent clearance
clearance effect conflguratlon

Wlth swirl Swirl breaker Effect of specially designed swirl breaker
breaker effect
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--_h ti ._ i"I-I |

I Pi-1 Pi i1 _-_\_ Pi+2
h,i ,, qi+l,' _\_

o'i-_--[ , .... IRsFi+1 LA
( l_S'_ i-i glsi.l_l( /

RSFi

Figure 1. - Labyrinth seal.
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Figure 2. - Cross section of chamber.
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30=

21'
l l'::=:n.l

Revolution Speed : 1800rpm

Seal Type C2/C1 C1 (ram) C= (mm',

Diverging 1.4973 0.1311 0.1963

Straight 1.0 0.1585 0.1585

Converging 0.6642 0.1915 0.1272

Outlet Pressure : 1.076kgf/cm =

Flgure 3. - Seal configurations by Wrlght's
test (ref. 12).
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INFLUENCE OF DISK LEAKAGE PATH ON LABYRINTH SEAL INLET SWIRL RATIO

R. Gordon Kirk

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

The results of numerous investigators have shown the importance of labyrinth

seal inlet swirl on the calculated dynamic stiffness of labyrinth seals. These

results have not included any calculation of inlet leakage swirl as a function of

geometry and sealing conditions of the given seal. This paper outlines a method of

calculating the inlet swirl at a given seal by introducing a radial chamber to

predict the gas swirl as it goes from the stage tip down to the seal location.

For a centrifugal compressor, this amounts to including the flow path from the

_mpel!er discharge, down the back of the disk or front of the cover, then into the

shaft seal or eye packing, respectively. The solution includes the friction factors

of both the disk and stationary wall with account for mass flow rate and calculation

of radial pressure gradients by a free vortex solution.

The results of various configurations are discussed and comparisons made to
other published results of disk swirl.

INTRODUCTION

Recent reports in the literature (1,2,3,4,5) have addressed the problem of

calculating the rotordynamic coefficients for a labyrinth seal having a given inlet

gas swirl, pressure drop, and resulting mass flow. The centrifugal design engineer

has at his disposal from standard aerodynamic design codes the gas swirl and

pressures at the impeller tip. The solution of the leakage gas path swirl and

resulting pressure distribution is important not only for labyrinth seal coefficients

but also for proper thrust balance calculations. This paper presents an approximate

method of calculating these desired parameters using a modified version of the

solution technique as proposed by lwatsubo (i) and later extended by Childs and

Scharrec (2). The extensions and modifications to the theory as outlined by (2) will

be discussed in this paper.

The equations of the modified formulation have been incorporated into a single

labyrinth seal analysis computer code to permit rapid evaluation of different design

conditions. The accuracy of the reported solution technique will be compared to

experimental and analytical solution results as reported in reference (6) and to the

limit case condition of zero leakage (approximately zero for computer program
results).

F ; C ING PAGE
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NOMENCLATURE

Values are given in both SI and U.S. Customary Units.

made in U.S. Customary Units.

b

c i

Hi

L i

The calculations were

- tangential velocity ratio, U/(r_)

-wall separation at ith radial chamber and radial clearance for seal tooth, m

(in)

- height of ith seal element tooth, m (in)

- axial length of ith seal chamber, m (in)

-mass flow rate, Kg/sec (ibm/sec)

gas pressure, N/m 2 (ibf/in 2)

- radial position on disk, m (in)

R,R o - outer radius of disk, m (in)

R -gas constant, (ibf • ft/Ibm/°R)

RiM - mean chamber radius, m (in)

RR - average radius of rotor seal chamber surface area, m (in)

RS - average radius of stator seal chamber surface area, m (in)

Re - disk Reynolds number, = RZ_/v

s -wall separation, m (in)

S - separation ratio, = s/R o

SJ - leakage parameter, = Vs/(R2_)
O

T - gas absolute temperature, OK (OR)

U t - tangential velocity, m/sec (in/sec)

V r - radial velocity, m/sec (in/sec)

Z - gas compressibility

p - gas density, Kg/m 2 (Ibm/in 2)

T - radial wall shear stress, N/m 2 (ibf/in 2)
rw

Trd -radial disk shear stress, N/m 2 (ibf/in 2)

- gas kinematic viscosity, m2/sec (in2/sec)

X - position factor, = (Ro - r)/R o

- rotor (disk) angular spin velocity, sec -I

-I
mB - swirl velocity for free vortex, sec
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METHOD OF SOLUTION

The solution technique proposed was developed to permit the same basic theory

and computer code to calculate both the circumferential swirl and pressure

distribution down the disk and across the labyrinth as one coupled system. This

technique was initially intended as a quick first pass method but the results have

proven to be very close to the more exact theories such that the added complication

of coupling different theories and matching boundary conditions of pressures,

temperatures, flows, and swirls may not be justified for rotordynamic evaluations. A

typical configuration is shown in Figure I for a centrifugal compressor stage disk
cover leakage flow path.

For the radial direction down the disk leakage path the equilibrium equation is

given by the following equation (6):

dV U2

-V r t I dP + rw rrd
r dr r = - _ d'_ p-_" ± p'_- [I]

For a free vortex flow neglecting the radial shear force which will be accounted for

by the crossflow factor in the circumferential equations, the pressure distribution

equation becomes

de P(r_6)2

d--{= r [2]

or dP 2

d'_ = Pr_6 [3]

whe re

_6 = gas swirl angular velocity at the radius, r.

Therefore, the pressure at any radius r is given by

2

___8(R2 2P(r) = P(R) - p - r ) [4]

This equation predicts the pressure along the disk if the gas swirl is known. The

gas swirl can be calculated from the circumferential momentum equation as outlined in

(2) and further modified to the following equation to account for variation in rotor,

stator and mean flow chamber radius. In addition, the crossflow turbulence

correction factors may be included in the solution to account for the inward flow
resistance.

1/2Po i

i i-I (R0_- Vol) 2 * YNR * ( IR_°- V°ilDHY )YMR [5]

* ARL * sign(R_ - Voi_. , wR___,RMC3

* YNS * I

l

where

RM = mean chamber radius

IVoll * DHY

)YMS , ASL * SIGN(Voi) * RMRS* C4

RR = mean rotor surface radius
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RS = mean stator surface radius

C3, C4 = crossflow turbulence factors

V°i = RMi _8i = average chamber swirl velocity

DHY = hydraulic diameter of chamber

YNR, YNS, YMR, YMS = turbulence factors per reference (2)

ARL, ASL = shear area for rotor and stator

Poi pressure and temperature dependent gas density in i th

ZRT i
chamber

u = gas kinematic viscosity

The leakage flow, m, can be calculated as outlined in (2) or by other suitable

calculations with the modification to radial chamber pressures given by equation (4).

The solution process requires that an initial swirl be selected to calculate the

pressure field and leakage. A swirl of 50% is suggested for starting the solution.

With this pressure field and flow, the momentum equation given by Eq. (5) is solved

for the first pass swirl values. These swirl values are then used to recalculate the

pressure drops down the disk and through the labyrinth and the resulting flow.

Another pass through Eq. (5) solution yields the second pass swirl values.

Typically, three passes give the desired convergence and the inlet swirl to the laby-

rinth is then taken from the chamber ahead of the first sealing tooth.

A general geometry input is used such that for the radial chambers a very small

tooth height and length with a tooth clearance equal to the disk to wall spacing can

be used to model the flow path. The radial surface area is calculated using the

indicated radius of each tooth location.

RESULTS OF SWIRL PREDICTED IN GAS LEAK PATH

The evaluation of the proposed swirl calculation procedure has been based upon

numerous similar conditions as reported by Jimbo (6). Initial comparisons of actual

compressor swirl results from similar geometry is overplotted in Fig. 2. The

parameter for leakage flow was noted to be similar to those given by Jimbo. The

leakage flow parameter is defined as

where

V , s
SJ = R"'_ _- [6]

o o

V = radial gas velocity

R = disk outer radius
o

= rotor speed

s = wall separation

For SJ = 0.0002 it is obvious that the compressor disk swirl does not agree with the

reported complete analytical solution. The swirl rates are greater from the

labyrinth program approximate solution. However, the other parameter, the disk

Reynolds number given by
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Re = R 2 _/_ [7]
o

was calculated and found to be considerably different from the test results. The

analysis results by Jimbo used air and a R = 9.82 x 105 was quoted. These initial

compressor test results had an R e = I.I x _08. To match the parameters for the two

systems the gas, pressure drop, and rotor speed were changed as given in _able 1

under test rig conditions. This gave a disk Reynolds number of Re = 3 x I0_, only

off by a factor of 3 from Jimbo, compared to a factor of 112 for the compressor stage

results.

The results for the labyrinth analysis overplot to the accuracy that the curves

can be evaluated. The swirl results for the compressor stage and the test result

condition are given in Tables 2 and 3, respectively. The swirl down the disk and

through the labyrinth are given in the table with the radius X-position factor

indicated for comparison to the analysis results of Figure 2. The results are in

excellent agreement for the case of near zero flow (i.e., swirl _0.5) and for SJ =

0.0002 where the swirl at X-position factor of 0.31 is now calculated as 0.563 as

compared to 0.63 for the compressor gas. A comparison of the compressor swirl, test

case calculation, Jimbo calculation, and test results reported by Jimbo are shown in

Figure 3. The test results show a slowing of the swirl that is not predicted. The

test rig was equiped with numerous flow and pressure measuring ports in the stator

wall and it is very possible that the cause of the test rig result reduced swirl was

the increased surface roughness resulting from the measuring instruments. Complex

flow fields could also be the cause of the discrepancy and are beyond the scope of

the present analysis. Results for reduced leakage, SJ = .000052, are given in Fig. 4

and labyrinth analysis compressor results for SJ = .0000372 overplotted. This case

of reduced leakage compares closely even though the disk Reynolds numbers are not

similar. The test rig results once again show a reduced swirl ratio with great

restriction noted in the ×-position factor range of 0.4-0.5. The overall trend is

similar as concluded by Jimbo.

One additional labyrinth program result is given in Table 4 for the condition of

leakage from the final compressor stage through a balance piston full labyrinth.

These results have a wall spacing that reduces as the radius reduces. A swirl of

0.82 is predicted for this geometry and gas properties, even though the flow SJ

parameter is 0.00021 and a uniform spacing air test result would give a swirl rate

closer to 0.6 (see Fig. 2 for ×-position ~0.4).

CONCLUSIONS

(I) The proposed approximate calculation procedure produces results that are

acceptable for rotor dynamic evaluations of labyrinth seals.

(2) The flow parameter, SJ, and disk Reynolds number, Re, used by Jimbo to present

results are very useful in comparing results for different designs and give

great insight into disk swirl behavior.

(3) Non-uniform leak path geometry can be used to increase or decrease the swirl in

the gas leak path.

(4) Increased stator surface roughness will suppress the swirl due to the increased

shear drag on the swirling flow.
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(1)

(2)

(3)

RECOMMENDATIONS

Test evaluations using current technology flow measurement capability should be

conducted on typical compressor and turbine disk design gas leak path

configurations.

The importance of gas properties and actual system configurations must be

closely evaluated.

The proposed calculation procedure can be used, with a high degree of

confidence, for entry swirl evaluation of compressor labyrinth designs.

(1)

(2)

(3)

(4)

(5)

(6)
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PARAMETER

TABLE 1 SYSTEM PARAMETERS FOR ACTUAL COMPRESSOR STAGE

DESIGN CONDITIONS AND AN ASSUMED SYSTEM TO APPROXIMATE THE

RESULTS OF TEST CONDITIONS FROM REFERENCE 6.

COMPRESSOR STAGE TEST RIG CONDITIONS

(Ref. 6 assumed conditions)

MW 21.33 25.95

_, m2/s 2.79 x 10 -7 4.64 x 10-6

(in2/sec) (4.32 x 10-4) (7.19 x 10-3)

Z .89 .955

PS, N/m 2) 5.90 x 106 3.43 x 105

(ib/In 2) (855) (49.7)

PE, N/m 2 5.17 x 106 1.01 x 105

(ib/in 2) (750) (14.7)

T, OK 331.6 301.4

(°R) (602.9) (548.5)

N, Hz 207.4 i00.0

(RPM_ (12566) (6000)

Ro, m .154 .154
(in) (6.05) (6.05)

Re i.i x 108 3 x 106
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TABLE 2 RESULTS FOR COMPRESSOR STAGE GIVING PREDICTED

CHAMBER _.L

DISK TIP 0

2 .08

3 .17

4 .25

5 .31

RADIAL + 6 .34

TURN 7

SEAL 8

+ 9

I0

Ii

12

CHAMBER FLOW SWIRL RATIO

SJ = 0.000023 0.00014 0.000236 0.00034

.52 .52 .52 .52

.5033 .534 .548 .557

.5053 .5496 .571 .5867

.5095 .5689 .600 .6225

.5144 .5938 .632 .6603

.5045 .5997 .6425 .6731

•452 .5605 .6111 .6472

.384 .5121 .571 .6131

.359 .475 .5377 .5834

.350 .447 .5097 .5574

.346 .425 .4862 .5347

.345 .408 .4663 .5146

R2 a_

R = o 108--= i.i x
e

CHAMBER

Disk Tip

2

3

4

5

RADIAL t 6

TURN 7

SEAL 8

+ 9

I0

11

12

TABLE 3 RESULTS FOR TEST CASE GIVING PREDICTED CHAMBER

SWIRL RATIO FOR ASSUMED SUPPLY PRESSURE CONDITIONS

0

.08

.17

.25

.31

.34

(SEE TABLE I)

SJ = .000015 0.0001 0.00022 0.00034

.52 .52 .52 .52

.496 .509 .522 .534

.496 .513 .532 .549

.497 .519 .544 .567

.492 .529 .563 .592

.47 .524 .564 .597

.43 .473 .518 .558

.3513 .4105 .465 .511

.3445 .3798 .431 .478

.3438 .364 .408 .453

.3438 .3558 .392 .434

.3438 .3512 .382 .421

R

e

R2_
o

-- = 3 x 106
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CHAMBER

0

1

2

3

4

5

RADIAL + 6

TURN 7

SEAL + 8

9

I0

11

12

13

14

15

16

17

18

19

20

21

TABLE 4 RESULTS OF LEAKAGE AND GAS SWIRL

FOR FLOW FROM LAST STAGE TO A BALANCE PISTON

LABYRINTH HAVING 15 TEETH

X SWIRL RADIUS WALL SPACE

(dim.) (dim.) (in.) (in.)

0 .637 9 -

.001 .641 8.94 .15

.07 .6756 8.34 .4

.15 .705 7.65 .36

.22 .732 7.02 .32

.293 .765 6.36 .3

.375 .81 5.62 .26

.42 .823 5.18 .22

- .781 5.14 -

- .74 5.14 -

- .71 5.14 -

- .68 5.14 -

- .66 5.14 -

- .64 5.14 -

- .62 5.14 -

- .61 5.14 -

- .598 5.14 -

- .588 5.14 -

- .580 5.14 -

- .573 _ 5.14 -

- .567 5.14 -

- .563 5.14 -

N = 11097. RPM

MW = 18.3

PS = 948 PSI

PE = 253 PSI

v = 7.63 x 10-4 in2/sec

Z = 0.979

y = 1.255

leakage = 1.09 ibm/sec

SJ = 0.00021

92(1162)
= 1.23 x 108

Re = -4
7.63 x I0

Cp = 0.52

c = 0.0115 in. radial clearance

type seal = interlocking
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/
/

FOR RADIAL CHAMBERS;

Figure I. - Typical compressor stage showing disk cover gas

leakage path with nomenclature for analysis.
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Z

I I I I I I I

.00034

.00024
S J :,00020
SJ=.O0010
S J ,,00005

NO LEAKAGE FLOW

I I I I 1

O. I 0.2 0.3 0.4 0.5 0.6 O.7 O.8 0.9

X .'POSITION FACTOR

Figuce 2. - Velocity pcofile along cadius, b = Ul(c_)

versus X = (Ro-r)/R o at Re = R_ _/v = 9.82×105 .

Overplot of typical compressor result with

Re = 1.1×108 (From Jimbo - fig. 6 ref. (6)).

I I I I l I I [ |

O--C) S= .--i_o=.0551 J
0 0--0 S =-i_-o --.0362

I.O- bo ESTIMATED =.440 //

U /Io,
-/-bo;O.52
/

_ o.5',

°t ° i,_ • PROGRAM RESULTS FOR APPROXIMATE TEST RIG CONDITIONS

0.0 1 I l I I I I I I
O.O O.I 0.2 03 0.4 0.5 O,6 0.7 0.8

X : POSITION FACTOR
Figure 3. - Tangential velocity pcofile along radius

b = U/(c_) versus X = Ro-r/R o for constant

leakase flow SJ = (S/Ro)[V/Ro_)] = 0.000104 at

Re = 9.82X105. Overplot of a typical compressor

result with SJ = 0.00014 and Re = 1.1X108; test

case points for SJ = 0.0001 and Re = 3X106 (over-

plot on fig. 18 of cef. (6)).
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I I i f i I I I

0--0 S =_ =.0551

_ s:-_0=.o3o2"°

_- bo ESTIMATED=.415

I"- I.

..J
_bo:0"65

Z _ 0 0--_0 0 ./_z°"'

0.0 1 I I I I I I I
0.0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8

X" POSITION FACTOR

Figure 4. - Tangential velocity profile along radius

b = U/(r_) versus X = Ro-r/R o for constant

leakage flow SJ = (S/Ro)[V/(Ro_)] = 0.000052 at

Re = 9.82×105 . Overplot of compressor having

SJ = 0.0000372 and R e = 1.3×108 (overplot on

fig. 20 of ref. (6)).
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THEORY AND MEASUREMENTS OF LABYRINTH SEAL COEFFICIENTS FOR

ROTOR STABILITY OF TURBOCOMPRESSORS

H.R. Wyssmann
Sulzer-Escher Wyss Ltd

Zurich, Switzerland

The prediction of rotordynamic coefficients for gas seals is achieved with the aid of a two-volume

bulk flow model based on turbulent rotationally symmetric 3D flow calculations including swirl flow.

Comparison of cross-coupling and damping coefficients with measurements confirm this approach. In

particular the theoretically predicted phenomenon that labyrinth damping is retained without inlet swirl is

confirmed. This is important for the design of high pressure compressors, where labyrinth damping is a
major contribution improving rotor stability. Discrepancies are found when comparing theory with

measured direct stiffness and the cross-coupling damping coefficients. First measurements of labyrinth
seals on a recently installed test rig operated with water are presented. Since forces are larger than on test

stands operated with air and since individual chamber forces are obtained phenomena like inlet effects may
be studied.

INTRODUCTION

For many years radial seal forces have been studied and investigated for stability of turbomachinery,

especially for pumps and turbocompressors. Many papers on this subject have appeared, most of them

either presenting measurements or a theoretical approach. Few authors have compared measurements with
theory, mainly because a reasonably simple theory producing results in reasonable agreement with

measurements was not available. The author in a former paper has presented a theory based on a two

volume bulk flow approach, incorporating results from 3D finite difference calculation of the rotationally

symmetric single cavity turbulent flow, based on time averaged Navier Stokes equations with a k-e

turbulence closure. Comparison of the results for cross-coupling coefficients of straight through labyrinths
with measurements showed good agreement. However, test results where not available at the time for

labyrinth damping, which the theory predicted to be substantial compared to bearing damping at high
densities found in turbocompressors for the oil and gas industry. This paper attempts to present the latest

findings both on the theoretical side and in measurements for the straight through seal with teeth on stator

or on rotor. For the larger part the measurements have been carried out at the Turbomachinery Laboratories

at Texas A&M University.

SYMBOLS

a area of cross-section between 2 strips

A area of cross-section of labyrinth channel

bQ cross-coupling damping
b R direct damping

cf friction coefficient
d distance between two strips

e eccentricity

h labyrinth strip height

kk_R cross-coupling stiffnessdirect stiffness

1 mixing length
rh leakage flow rate through labyrinth
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rh r mass rate exchange between 2 control
volumes

p pressure
Q cross-coupling force
R direct force

r labyrinth radius

Ar radial clearance of concentric labyrinth
t time

w circumferential velocity

z number of labyrinth strips

[3 mixing factor
8 radial clearance of eccentric labyrinth

tx labyrinth flow coefficient

u viscosity

9 density
"_ stress

q_ angle

Subscripts:

in inlet

j jet
r rotor or radial

s stator

out outlet

THEORY

The theory gives the solution for the circumferential pressure distribution of straight through

labyrinths for gas and (incompressible) hydraulic flow. With some modifications, the theory is also
applicable for staggered and full labyrinths. Here only a summary of the theory is given. More detailed

results may be found in [10]. The calculation is based on bulk flow assumptions, i.e. on a uniform flow

profile in the region between the strips and (a different) uniform profile between strip tips and bushing (for

rotor seal) or rotor (for stator seal). This is schematically depicted in Fig. 1. The validity of the assumed

velocity profiles has been confirmed by extensive numeric flow calculations for the rotationally symmetric

3D turbulent flow in a single chamber. In these the velocity field v is decomposed into a time averaged part
_ and a turbulent fluctuation part v':

v = _7 + v'. (1)

The continuity equation for v, assuming incompressibilit3' within the chamber, reads after insertion of (1)

and time averaging:

V-7= O.

where V denotes the Nabla Operator.

The time averaged Navier Stokes equations become:

Oq/Ot + (_7.V)_ = - Vp + V_3 x V x _ + turbulent diffusion.

The turbulent diffusion term is described by a two parameter model, based on k = 1/2 v i' v i' , the turbulent

kinetic energy and e = l)0Vl'/Oxi.OVl'/Oxi, the dissipation rate of the kinetic fluctuation energy. For k and

transport equations may be written down with a total of 5 empiric parameters. Correlation of the

parameters to flow measurements has been given by Stoff [8].

As boundary conditions, the pressure difference across the chamber, the rotational speed and the inlet

circumferential velocity are given. The numerical calculations yield the pressure and velocity distributions

(time averaged) within the chamber. The analysis does not consider the flow contraction across the strip
however. The results of this analysis has been used for the modelling of the eccentric quasi-stationary flow

in the labyrinth chamber as given below. The following equations are valid for seals with strips on the
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rotor, similar equations hold for stator seals. The field equations for the two control volumes in Fig. 1
read:

Continuity: a_wi/_( p + 8d_wm/b( p - wmd_8/_ q) - r_A/3t = 0, (2)

a3wi/3_P - mr/p = 0. (3)

Momentum: -2pawi3wil3( p - 2pSdwm3Wm/3 q) - pwm2d38/3¢p +
+ l_l(Win - Wout) - arr "_r-

- asr xs - prd3(SWm)/3t- pra3wi/3t = A3p/3cp (4)

-2pawi3wi/3q° + l}lrWo - arr _r -

- dr_j - pra3wi/3t-- a3p/3cp. (5)

Here, the w's denote the circumferential velocity components of the flow: w i the velocity of the core flow

between the strips, w m of the free jet between strip tips and stator and w o the circumferential velocity at the

interface between the two flow regions.

The axial flow is described by the classical leakage equation for the compressible flow through a seal (see

Neumann [6], for instance):

a:n= 2xgrSpo_)'](1 - 7r,p2)/z. (6)

The flow coefficient tx follows the definition of Neumann [6] and takes into account the labyrinth strip

geometry.

The turbulent wall shear stresses are given by

= 1/2 Cfr p Iwi- Wrot [(wi- Wrot) (7)
for the rotor, and

"Cs = 1/2 Cfsp'_(Cax 2 + Wm 2 )W m (8)

for the stator, where the friction coefficients Cfr and Cfsare calculated with Prandtl's universal law for the
tube flow.

The interaction of the two flow regions is described by a turbulent free shear stress "cjmodelled according
to Prandtl's mixing length theory:

'l;j = pl 2 lOu/OyIOu/Oy,

where u is the flow velocity in the shear flow zone. For free jets, an obvious chioce for the mixing length 1

is the mixing thickness b (Abramovich [1]). For the obstructed jet flow at hand, a proportionality factor [3
is introduced, such that 1 =_b, where _ is a function of the labyrinth geometry. _ has been determined by

correlation of the (bulk flow) solution of the concentric labyrinth to the 3D finite difference calculations of

the rotationally symmetric flow described above and to measurements.

In order to obtain the stiffnes and damping coefficients of the seal, a first order solution of the equations

(2) through (8) in e and 6 is sufficient. Hence, the gap between strips and stator may be written as

where e/Ar _ 1.

as:

8 = Ar + e(t)cos%

The flow quantities and the pressure in equations (2) through (8) may therefore be written
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7n(q w i = W'-i + _i(q_,t), m = m + ,t),

Wm= Wm + '_m(q0,t), P = P + _(ql,t).

The zeroth order solution describes the concentric labyrinth and has been used to determine the mixing

factor _ by correlation to the 3D finite difference calculations of the rotationally symmetric flow described
above.

The pressure p(%t), linear in e and e is obtained upon integration of the linearization of equations (2)

through (8). The force components acting on the rotor read:

2n 2n

Q = 0_sinq)rddf, R = ff)cosq_rdd% (9)

with Q orthogonal to and R in line (but opposite) with the rotor eccentricity e. In cartesian coordinates the
force components may be written as:

where kR= stiffness, kQ=
the seal.

bQ1Fxl=- - bgj[yj

cross-coupling stiffness, bR= damping, and bQ=

(10)

cross-coupling damping of

For staggered and straight labyrinths, a similar theory may be applied. 3D calculations of the concentric

labbyrinths have shown the circumferential velocity to be almost uniform across the whole chamber here,
hence a single circumferential velocity may be assumed [10].

COMPARISON OF CROSS-COUPLING STIFFNESS WITH MEASUREMENTS

The cross-coupling coefficients obtained from the theory as presented above has been compared to

measurements carried out by different authors. It agrees well with the laboratory measurements carried out

by Benckert [2] for various types of labyrinths. The least agreement has been found for staggered and full
labyrinths. For reference see [10]. Measurements on a real compressor at high pressures with Nitrogen

have been carried out for the first time by the authors company. The circumferential pressure distribution

of the first stage impeller shroud seal in a four stage natural gas compressor designed for a discharge

pressure of 320 bar has been measured for different rotor eccentricities relative to the seal. Fig. 2 shows
the test labyrinth in the lower half of the inner casing. The measurements have been carried out with and

without a swirl brake (Fig. 3) to confirm the theoretically predicted influence of the inlet swirl velocity on

cross-coupling stiffness. The circumferential velocity of the leakage flow was measured by pitot tubes in

front of the first labyrinth strip and has been used as inlet condition for the calculation. Fig. 4 shows '
measured and calculated cross-coupling stiffness of the seal for different pressure levels and rotor speeds.

The theory agrees well with measurements. With swirl brake installed, theory gives less negative cross-

coupling than found by measurement. However, the absolute value of the cross-coupling stiffness

compared to the case without swirl brake is very small (scale in Fig. 4 is blown up by factor 10 for case

with swirl brake), hence for practical applications this discrepancy has no importance. All these tests could
not produce damping coefficients, but they basically confirmed the theoretical approach presented above.

They also confirmed the dominating influence of the inlet swirl velocity on the magnitude of the cross-
coupling coefficients and hence were in line with the many cases where rotor stability problems have been

solved by reducing the inlet swirl velocity of the labyrinth leakage flow. The theory however predicts

damping coefficients of labyrinth seals of a magnitude to improve substantially the rotor damping for high
pressure compressors. Hence, a confirmation by measurements is of great importance.
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COMPARISON OF FULL SET OF LABYRINTH COEFFICIENTS WITH MEASUREMENTS

A test rig for air seals has been set up at the Turbomachinery Laboratories of Texas A&M University,

capable to measure the full set of labyrinth coefficients as defined by (10). The rotor is moved by a

hydraulic shaker performing translatory movements. By measuring the reaction forces the dynamic
coefficients can be identified. This differs from the measurements described above, where forces were

obtained by integration of pressures. Extensive measurements have been carded out with straight- through

teeth on stator and teeth on rotor labyrinth seals with 16 chambers by Childs and Scharrer ([3], [7]). Rotor

speed varied between 500 and 8000 RPM or 4 m/s to 63 m/s in circumferential velocity, inlet pressures
between 3.08 and 8.25 bar (against ambient). Inlet circumferential velocity of the leakage flow could be

varied by employing different inlet guide vanes. Further measurements have been carded out with higher

rotor speeds and different labyrinth geometry, but no data has been available until now. Fig. 5 through 10
show some of the results taken from [7], together with the theoretical results obtained by the theory

presented above. Agreement of both cross-coupling and damping coefficients with theory for both teeth on

rotor and teeth on stator is more than satisfactory, keeping in mind that a stated experimental uncertainty of
7 kN/m for stiffness and 87.5 Ns/m for damping exists. Moreover inlet swirl velocity has not been

measured directly but is calculated by knowing the guide outlet vane corrected by a factor obtained by

guide vane cascade tests. No uncertainty is given here. Also the tested chamber geometry was not exactly
modeled in the theory, theoretical results correspond to a tooth wall angle of 15 ° compared to 6 ° for the

tested labyrinth. Nevertheless, the agreement is reasonably good, especially for the lower pressure ratios

for non-choked flow conditions, which are the more realistic ones in practice. In the case of direct stiffness

the theory gives a completely different dependence on inlet swirl as compared to the measurements. The
measured coefficients change almost linearly with inlet swirl velocity, whereas theory gives a parabolic

dependence and virtually zero stiffness without swirl. The experimental results are somewhat in contrast to
other measurements, namely those by Benckert, where dependence on swirl is similar to that given by

theory. This point has to be investigated further, since the influence of negative labyrinth stiffness on

critical speeds and stability may be substantial, especially for back-to-back compressors with the piston
labyrinth midspan. Most of the cross-coupled damping measurements are in the order of the given

uncertainty. Theory here gives considerably larger values, at least for high inlet swirl. Moreover, the

dependence _on swirl as given by theory is linear whereas the measurements show little variation.

THE INTRINSIC IDENTITIES OF STATIC AND DYNAMIC COEFFICIENTS

The following simple kinematic reflections show that cross-coupling and direct damping forces are

basically two different representations of the same physical phenomena. This is not further surprising,

since they both have their origin in the fluid dissipation forces. We will further show that if the cross-
coupling forces (as functions of inlet swirl velocity) are known, the damping forces can directly be
determined from them. The same holds {rue for direct stiffness and cross-coupling damping. This implies

then, that if the static forces (i.e. direct stiffness and cross-coupling) are known (for instance by

measurements) for a sufficient range of inlet swirl velocities and with a sufficient accuracy, the dynamic

forces (i.e. direct and cross- coupling damping) can be determined without further measurements. The

above holds true if no centrifugal effects are present, which is generally tacitly assumed (otherwise, forces

on the rotor would be different from those acting on the stator).

Let us consider a labyrinth with slrips on the rotor (without loss of generality). The rotor has rotational

speed _, eccentricity e and a velocity of the rotor center of fie, i.e. the rotor is rotating around the seal
center. Let the inlet swirl velocity be Win (see Fig. 1 la). Then the lateral force F acting on the rotor is

given by
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F = (kQro t - bRrot _)e,

where kQrot is the cross-coupling stiffness and bRrot the direct damping coefficient. Seen from the rotating
reference frame (x',y'), the rotor is stationary, the stator rotates with -f2 and the inlet swirl velocity is -

(Wrot-Win), where Wrot is the circumferential rotor speed (see Fig. 1 lb). With the above assumption i.e no

centrifugal effects, the forces have not changed by the change of coordinates and by the same token we can
interchange rotor and stator without changing the forces (Fig. 1 lc), i.e. we have now a seal with teeth on

stator, static eccentricity e, rotor speed -f2 and inlet swirl velocity -(Wrot-Win ). The force acting on the rotor

is now simply a cross-coupling force kQstate in the opposite direction of F. Setting the two forces equal,
we obtain the following equation:

kQrot(Win ) - bRrot (Win) _'2 = - kQstat(Wrot-Win),

or

bRrot(Win) = 1/f2 [kQrot(Win) + kQstat(Wrot-Win)]. (11)

Hence, the damping coefficient is completely determined by cross-coupling coefficients. For stiffness and
cross-coupling damping the same reasoning leads to

bQrot(Win) = 1/_ [kRstat(Wrot-Win ) - km.ot(Win)]. (12)

Since both expressions involve differences, the practical value for determining damping coefficients may
be questionable. However, the identities may be used for either a check for measurement accuracy or for

secondary effects not included in the theory. Also it follows from the identities that a theory which predicts
well cross-coupling stiffness will also predict damping with the same accuracy and the same is true for the

other two coefficients. Therefore, it is no coincidence that the presented theory performs equally well for
cross-coupling and damping.

WATER OPERATED TEST STAND FOR ROTORDYNAMIC FORCE MEASUREMENTS

A test rig has been set up at the Institut ftir Fliissigkeitstechnik at the Federal Institute of Technology
in Zurich, Switzerland. It is water operated and was initially designed for the measurements of rotor-

dynamic coefficients of hydraulic seals for pumps and water turbines. Important features of this test rig are
the high measuring accuracy, which allows precise measurements even at zero inlet swirl and low rotor

speeds, the seperate measurement of the individual chambers and the hydraulically operated stator,

allowing various orbit configurations, such as circular orbits. Rotor speed varies between 0 and 3570

RPM (i.e. 0 - 67 m/s), pressure up to 8 bar, stator frequency up to 30 Hz. Inlet swirl is either zero or close

to rotor circumferential speed (produced by rotor blades). The pressure distribution is measured in the

individual chambers by static and dynamic pressure probes, inlet swirl velocity by total pressure probes.

Fig. 12 gives a cross section of the test stand and Fig.13 a schematic of the hydraulic stator drive. Fig. 14
shows the test stand after installation (Figures by courtesy of Institut ftir Fliissigkeitstechnik, Federal

Institute of Technology, Zurich Switzerland). Up to now, only static measurements of direct stiffness and
cross-coupling stiffness have been carried out with no inlet swirl. The first measurements have been

carried out with a three chamber straight-through labyrinth seal with teeth on the stator. Fig. 15 shows the

results of the measurements of the different chambers for different pressures and rotor speeds. An

interesting fact is the positive stiffness in the first chamber. It may be explained by the circumferential

variation of the axial friction losses in an eccentric seal (also called Lomakin effect [4], [5]). For a plain
annular seal the centering stiffness coefficient is given by ([9]):
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k = Ap 7z)_4e,

2Ar2(_.l/2Ar + 1)2

where Ap is the pressure drop along the seal, 1 the length, Ar the radial clearance and _. the pipe flow
number. Considering the first labyrinth chamber as a plain annular seal with clearance equal to tip

clearance, we obtain the values for k very close to the measured direct stiffness (see Fig. 16), at least for

the lower rotor speeds. Hence it seems that for direct stiffness the first chamber acts rather like a plain
annular seal. Even in the second and third chamber the direct stiffness shows anomalous behaviour for the

lower rotor speeds, only for high rotor speed is the behaviour as predicted by theory, i.e. a reduction of
the (negative) stiffness with increasing pressure difference. This reduction is a consequence of the smaller

pick-up of circumferential speed in the chambers with the increase of axial flow with pressure difference.

For gas seals, where the density increases with pressure, the (negative) stiffness increases also (see Fig. 7

and 8). Another interesting feature is the strong dependence of the stiffness on rotor speed as predicted by

theory. This is in contrast to the measurements by Scharrer [7], where stiffness was virtually independent
of rotor speed. Cross-coupling stiffness shows an expected negative sign, but it increases from first to

second chamber as opposed to theory. Again, it sems that the first chamber is behaving differently
compared to the following ones. As in the comparison for the short labyrinth in Fig. 4 for zero inlet swirl,

the theory gives generally larger cross-coupling stiffness (in the algebraic sense) compared to

measurement. Since the cross-coupling forces are very small at zero swirl compared to practical inlet swirl

velocities found in reality (without swirl brakes), this does not impair seriously the theory for predicting
rotor stability, as long as damping coefficients are predicted accurately. Further measurements will include
damping coefficients with circular or elliptical orbits of the stator and measurements with inlet swirl
velocity.

CONCLUSIONS

The theoretical prediction of cross-coupling and damping coefficients has been corroborated by
several independent measurements for different rotor speeds and inlet swirl velocities of the leakage flow,
the most important ones being the gas seal tests at the Turbomachinery Laboratories at Texas A&M

University. In particular, it has been shown that the damping coefficients of the seals are behaving as

predicted by theory, i.e. they are insensitive to a wide range of inlet swirl velocities. This has important
consequences for the design of high pressure centrifugal compressors, where the seals may be considered

as passive dampers for rotor vibrations. For the direct stiffness and the cross-coupling damping
coefficients, the theory differs largely from measurements, at least for the gas seal measurements from

Texas A&M University. Here, further work is necessary on the theoretical and also on the experimental
side. The water operated test stand presented gives new insights into the behaviour of labyrinth seals due

to its high measuring resolution and the possibility of measuring individual chambers. Further

measurements may show the way how to resolve the discrepancy between theory and measurements for
direct stiffness and cross-coupling damping.
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Fig. 1 Control volumes and circumferential velocity 
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EXPERIMENTAL ROTORDYNAMIC COEFFICIENT RESULTS FOR TEETH-ON-ROTOR

AND TEETH-ON-STATOR LABYRINTH @AS SEALS l

Dara W. Chllds and Joseph K. Scharrer

Texas A&M University

College Statlo_, Texas, 77843

An experimental test facility is used to measure the rotordynamlc

coefficients of teeth-on-rotor and teeth-on-stator labyrinth gas seals. Direct

damping coefficients are presented for these seals for the first time. The

results are presented f6r the two seal configurations at identical operating

conditions, and show that, in a rotordynamic sense, the teeth-on-stator seal is

more stable than the teeth-on-rotor seal, for inlet tangential velocity in the

direction of rotation.

NOMENCLATURE

A Seal orbit radius (L); illustrated in figure 9.

B Tooth height (L); illustrated in figure I.

C,c Direct and cross-coupled damping coefficients (FT/L)

Cr Radial clearance (L); illustrated in figure I.

K,k Direct and cross-coupled stiffness coefficients (F/L)

F Seal reaction-force (F)

L Tooth pitch (L); illustrated in figure I.

Pr Seal inlet pressure (F/L 2)

Rs Seal radius (L); illustrated in figure I.

X,Y Rotor to stator relative displacement components (L)

Shaking frequency (I/T)

Shaft angular velocity (I/T)

Subscripts

i Value in i-th cavity

r Radial component

t Tangential component

x,y Rectangular coordinate directions
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INTRODUCTION

The design, development, and operation of the test apparatus and facility
which have beendeveloped to measure the leakage and rotordynamlc coefficients
of annular gas seals has been described by Childs et al. [I]. This apparatus
has been designed and used to measure rotordynamic coefficients of plain
annular seals, plain seals with honeycombstators, and labyrinth seals. Nelson
et al. [2] presented the results for plain annular seals with constant-
clearance and convergent-tapered geometries. This paper presents the results
for "see-through" labyrinth seals, as shown in figure I, with teeth on the
rotor and teeth on the stator.

As
defined by the following llnearized force-displacement model.

described in [I], the rotordynamlc coefficients for a

Fx IKxx Kxy1

define the motion of

X + ICxx
tY LCyx

the seal's

X

CyyJ

(i)

gas seal are

Where (X,Y) rotor relative to its stator,

(Fx,F v) are the components of the reaction force acting on the rotor, and

(Kxx,_yy,Kxy,Kyx)_ and (Cxx,Cyy,Cxy,Cy x) are the stiffness and damping

coefficients respectively. Equation (I) applies for small motion of the rotor

about an arbitrary eccentric position. For small motion about a centered

posltion, the following simpler model applies.

Although the test apparatus has the capability of separately identifying the

eccentric-position rotordynamle coefficients of equation (1), the results

presented here are for the eentered-position ease only.

A limited amount of experimental data have been published to date on the

determination of the stiffness coefficients for labyrinth gas seals. However,

no data have been published concerning the damping coefficients of labyrinth

gas seals. The first published results for stiffness coefficients were those

of Wachter and Benckert [3,4,5]. They investigated the following three types

of seals: a) teeth-on-stator, b) interlocking teeth on the rotor and stator,

and c) teeth on the stator and steps or grooves on the rotor. Seals were

tested in the following two modes: a) No seal rotation, but fluid prerotation,

and b) seal rotation but zero fluid prerotation. These results were limited in

that the pressure drop was small, much of the data was for nonrotating seals,

no data were presented for teeth-on-rotor seals. The next investigation was

carried out by Wright [6], whose results were for single-cavity teeth-on-stator

seals with convergent, divergent, or straight geometries. Although this was a

very limited and special case, these results did give insight into the effects

of pressure drop, convergence or divergence of the clearance, and forward or

backward whirl of a seal. The most recent investigation was that of Brown and

Leong [7], who investigated various teeth-on-stator seal configurations. Their

results include variations of pressure, geometry, rotor speed, and inlet

tangential velocity.
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In reviewing previous experimental programs, there is a clear need for
extensive testing of seals with teeth on the rotor and results for measured
damping coefficients. This paper present some initial results for stiffness
and damping coefficients for two, nomlnally-identical seals, differing only in
that one is a tooth-on-rotor configuration and the other is a tooth-on-stator
configuration. The test apparatus, facilities, and data-identlfication
procedures used in this study are described in detail in references [I] and
[2].

EXPERIMENTALRESULTS

The rotor and results for measured damping coefficients. This paper
present some initial results for stiffness and damping coefficients for two,
nominally-identical seals, differing only in that one is a tooth-on-rotor
configuration and the other is a tooth-on-stator configuration. The test
apparatus, facilities, and data-identification procedures used in this study
are described in detail in references [I] and [2].

The test results reported here were developed as a part of an extended,

joint NASA-USAF funded research program for annular gas seal studies. Tests

were of a smooth-rotor/labyrinth-stator seal and a labyrinth-rotor/smooth-

stator seal. The test program had the initial objective of comparing the

leakage and stability performance of a teeth-on-stator and a teeth-on-rotor

labyrinth seal. Air is the test fluid.

Test Apparatus and Seal Configuration

The rotor shaft is suspended pendulum-fashion from an upper, rigidly

mounted pivot shaft, as shown in supported in the test section housing by three

configuration. Different seal stator designs are obtained by the use of
inserts.

The dimensions and pertinent data for each seal configuration are given in

table I. The constants given in table I for Fanning friction factor

determination (mr,nr,ms,ns) are the same as those determined for the constant-

clearance seal case as discussed by Nelson et al. [2]. The smooth and

labyrinth stator inserts used for these tests are shown in figure 4. The

labyrinth rotor and the tooth detail for both rotor and stator are shown in

figures 5 and 6.

Table I. Dimensions and parameters of

seals tested in this study

Teeth on rotor Teeth on stator

Radius (cm) 7.25 7.56

Length (cm) 5.08 5.08

Tooth pitch (cm) 0.3175 0.3175

Tooth height (cm) 0.3175 0.3175

Clearance (cm) 0.0406 0.0406

mr -0.33 -0.33

nr 0.187 0.187

ms -0.33 -0.33

ns 0.187 0.187

Avg. Inlet Temp. (K) 300.0 300.0
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Test Variables

When shaking about the centered position, the Dynamic-Seal-Apparatus is

capable of controlling the following three independent variables: pressure

ratio, rotor speed and inlet tan_entlal velocity. The actual test points for

each of these three independent variables are shown in table 2. When reviewing

the following figures, table 2 should be consulted for the definitions of all

symbols used.

The pressure ratios achieved at the TAMU facility were up to 2.5 times

larger than those published by Wachter and Benckert [3,4,5]. The reservoir

pressures, as measured upstream of the flowmeter, are given in table 2. These

values differ from the actual inlet pressure, as given in the pressure

distribution plots, because of frictional losses and an acceleration of the

fluid due to the inlet guide vanes. No tests could be run at zero pressure

difference, since a small pressure difference is necessary to keep the rotor

from shifting axially and rubbing the inlet guide vanes.

Table 2. Definition of symbols used in figures.

Supply Pressure Rotor Speeds Inlet Tansentlal
Velocities

I-3.08 bar

2-4.46 bar

3-5.84 bar

4-7.22 bar

5-8.25 bar

1-500 cpm

2-1000 c)m

3-2000 cgm

4-3000 c)m

5-4000 cgm

6-5000 c_m

7-6000 c)m

8-7000 c_m

l-High velocity

against rotation

2-Low velocity

against rotation

3-Zero tangential

velocity

4-Low velocity

with rotation

5-High velocity

with rotation

The rotor _speeds tested to date at the TAMU facility were comparable to
those published by Wachter and Benckert. The surface velocities reached here

were about half of those reported by Wachter and Benckert. However, Wachter and

Benckert published very little data which combines rotor rotation and inlet

fluid prerotation. In this study, all possible combinations of independent

variables are given. For discussion purposes, the 3000 cpm rotor speed will be

highlighted. The results showed little sensitivity to rotor speed and the 3000

cpm point tended to yield the clearest and most descriptive data. No zero

rotor speed tests were run, since rotor rotation was necessary to prevent

damage to the thrust bearing during shaking.

The inlet tansentlal velocities attained were up to 2.0 times those

published by Wachter and Benckert. The inlet tangential velocities are given

in figures 7 and 8 as a function of pressure ratio for both teeth-on-rotor and

teeth-on-stator seals. The figures show that inlet tangential velocity remains

fairly constant over the pressure ratios tested. There were five test points

for inlet tangential velocity; two positive, two negative, and one at zero.

The zero inlet tangential velocity point corresponds to the x-axis in the

figures 7 and 8. The negative numbers shown in the figures mean that the inlet

tangential velocity was opposed to the direction of rotor rotation. The

positive numbers mean that the inlet tangential velocity was in the same
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direction as rotor rotation. The two different magnitudes of inlet tangential

velocity, for each direction, correspond to the different inlet guide vane

geometries, as discussed in [9]. The ratio of inlet tangential velocity to

rotor surface velocity, ranged from about -13 to about 16. Although the larger

numbers are practically unrealistic, they do give insight into the effects of

inlet tangential velocity that would have otherwise gone unnoticed. This is

most evident in the plots of direct damping versus inlet tangential velocity.

The effects of the three independent variables; pressure ratio, inlet

tangential velocity, and rotor speed on the dynamic (rotordynamic co--e'{_ci_
results will be reviewed in order.

Dynamic Results

For a circular orbit of amplitude A, the resultant radial and tangential

forces developed by the seal model of equation (2) are illustrated in figure 9

and are defined by:

-Fr/A - K + cm

Ft/A - k - Cm

From a stability standpoint, the destabilizing tangential force, Ft, is of most

interest. The destabilizing influence comes from the cross-coupled stiffness,

k, and the stabilizing influence comes from the direct damping, C. The radial

force usually has little influence on stability, except in rare cases involving

multistage "back-to-back" centrifugal compressors with midspan seals where

large negative direct stiffness values may reduce the natural frequencies.

Since the focus of this study was on stability, the cross-coupled stiffness and

direct damping results, which have the most influence, will be presented first.
The direct stiffness will follow.

Relative Uncertainty

Before proceeding with the results, a statement must be made concerning

the uncertainty present in the experimental results. Using the method

described by Holman [8], the uncertainty in the dynamic coefficients can be

determined. The uncertainty in the force, excitation frequency, and

displacement measurements are 0.89 N (0.2 ib), 0.13 Hz , and 0.0013 mm (0.05

mils), respectively. The resulting calculated uncertainty in the stiffness

coefficients is 7 N/mm (40 lb/in) and 0.0875 N-s/mm (0.5 ib-s/in) for the

damping coefficients. Since the measured cross-coupled damping results were

rarely greater than the uncertainty, test results are not provided here for

this parameter; however data are available in [9].

Cross-coupled Stiffness Comparison

Figure 10 shows a comparison of the cross-coupled stiffness versus rotor

speed for the inlet tangential velocity set of table 2. The figure shows that

the teeth-on-rotor labyrinth develops a larger cross-coupled stiffness than the

teeth-on-stator configuration. This figure also shows that cross-coupled

stiffness results for the the two seals were insensitive to rotor speed over

the range of speeds tested (500-8000 cpm). Figure 11 shows the results for

cross-coupled stiffness versus inlet tangential velocity for the two seals for

the inlet pressure set of table 2. This figure shows that the teeth-on-rotor

seal develops consistently larger cross-coupled stiffness than the teeth-on-

stator seal for all inlet tangential velocity values tested. Figure 12 shows a
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comparison of the cross-coupled stiffness of the two seals versus pressure
ratio at 3000 cpm. This figure shows that the cross-coupled stiffness of both
seals increase with pressure ratio. However, the cross-coupled stiffness for
the teeth-on-stator seal levels off under choked conditions (Pr>5.84 bar).

Direct Damping Comparison
Figure 13 shows a comparison of the direct damping versus inlet tangential

velocity for the inlet pressure set of table 2. The results show that the

teeth-on-rotor case also develops larger direct-damping coefficients than the

teeth-on-stator case. This figure also shows that the direct damping for both

seals is very sensitive to inlet tangential velocity. Figure 14 shows a

comparison of the direct damping versus pressure ratio at 3000 cpm. This

figure shows that the direct damping for both seals increases with increasing

inlet pressure. Figure 15 compares the direct damping versus rotor speed for

the inlet pressure set of table 2, and shows that direct damping is relatively

insensitive to rotor speed.

Direct Stiffness Comparison

Figure 16 shows the results for direct stiffness versus rotor speed with

the inlet pressure set of table 2. The figure shows that the teeth-on-rotor

case develops a substantially larger magnitude of direct stiffness than the

teeth-on-stator case. Note that the direct stiffness is negative which would

reduce the system natural frequency and reduce the stability. Figure 17 shows

a comparison of the direct stiffness for the two seals versus pressure ratio at

3000 CPM. This figure shows that the magnitude of direct stiffness increases

with increasing pressure ratio for both seals. The direct stiffness for the

teeth-on-stator seal seems to level off for choked exit conditions (Pr>5.84

bar). Figure 18 shows a comparison of the direct stiffness versus inlet

tangential velocity for the two seals for the inlet pressure set of table 2.

The figure shows that the direct stiffness for the teeth-on-stator seal

increases with increasing inlet tangential velocity, while the direct stiffness

for the teeth-on-rotor seal decreases with increasing inlet tangential

velocity.

Whirl Frequency Ratio Comparison

Since a direct comparison of the coefficients of the two seals does not

show any clear stability advantage, another method of comparison must be used.

One method in which the dynamic coefficients of the two seals can be directly

compared is through their respective non-dlmenslonal whirl frequency ratios.

Whirl ratio is defined by

Whirl ratio = k/C_

where _ is the shaking frequency, and is the ratio of the destabilizing

influence of the cross-coupled stiffness and the stabilizing influence of

direct damping. From a stability viewpoint, a minimum whirl ratio is

desirable. Figure 19 shows a comparison plot of the whirl frequency ratios for

the two seals versus inlet tangential velocity with the inlet pressure set of

table 2, and shows that the teeth-on-stator seal has a smaller whirl ratio than

the teeth-on-rotor seal for positive inlet tangential velocities. This result

is significant because most turbomachlnes have positive inlet tangential

velocities for seals and teeth-on-stator seals are shown to be clearly superior

to teeth-on-rotor seals from a stability viewpoint.
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CONCLUSIONS

Test results have been presented for stiffness and damping coefficients of

teeth-on-rotor and teeth-on-stator labyrinth seals which are geometrically

similar. The seals were tested under identical operating conditions to

investigate the influence of rotor speed, pressure ratio and inlet tangential

velocity on the rotordynamic coefficients.

The experimental results of the previous section support the following

conclusions:

(I) The stiffness and damping coefficients are insensitive to rotor

speed for both seal configurations tested. This may be due to a lack of shear

forces developed by the seals and may change as higher speeds are attained.

(2) The stiffness and damping coefficients are very sensitive to inlet

tangential velocity.

(3) The stiffness and damping coefficients increase with increasing

inlet pressure.

(4) From a rotordynamlc standpoint, the teeth-on-stator seal is more

stable than the teeth-on-rotor seal for positive inlet tangential velocity.

As a point of interest, the theory of reference [10] was in

agreement with the cross-coupled stiffness results presented here.

predictions for direct stiffness and damping are unsatisfactory.

the comparison are provided in reference [9].

reasonable

However
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NON-LINEAR IDENTIFICATION OF A SQUEEZE-FILM DAMPER

Roger Stanway, John Mottershead, and Riaz Firoozlan
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In this paper the authors describe an experimental study to identify the

damping laws associated with a squeeze-film vibration damper. This is achieved by

using a non-linear filtering algorithm to process displacement responses of the
th

damper ring to synchronous excitation and thus to estimate the parameters in an n -

power velocity model. The experimental facility is described in detail and a

representative selection of results is included. The identified models are

validated through the prediction of damper-ring orbits and comparison with observed

responses.

I NTRO DUCTIO N

A fundamental problem in rotor-bearing dynamics is the experimental

determination of mathematical models to represent the dynamics of oil-film bearings,

sometimes referred to as the problem of bearing identification. One category of

oil-film bearing is the squeeze-film damper which often forms part of an isolation

system for vibration control in turbomachinery. Damping is provided by lubricant

supplied to an annulus between the bearing housing and damper-ring. The damper ring

does not rotate but is free to whirl in response to applied excitation: thus the

lubricant in the annulus is able to dissipate vibrational energy.

The simplest linear analysis of the squeeze-film dynamics indicates that a

model involving two viscous damping coefficients can be used to characterise the

behaviour of the film (ref. I). It is generally accepted that such a model can

account for the damper ring's response to small perturbations around the concentric

position. However the comprehensive tests reported by Tonnesen (ref. 2) show that

larger excursions about eccentric positions cannot be predicted using a linear
model.

In the last five years considerable progress has been made in the development

of techniques for bearing identification. Most attention has been given to

frequency-domain methods which have been used to estimate direct- and cross-damping

terms associated with a model squeeze-film isolator (ref. 3) and can readily be

extended to identify models of multi-mode rotor-bearing systems (ref. 4). However,

frequency-domain algorithms are based upon a prior assumption of linearity and thus

significant non-linearities cannot readily be accommodated. At Liverpool the

identification of linearised squeeze-film models has, in general, been approached

using time-domain techniques. A series of numerical experiments indicated that a

least-squares filtering algorithm is particularly suitable for estimating the four

squeeze-film damping terms from displacement responses to synchronous excitation

(ref. 5). A model squeeze-film isolator was constructed and a comprehensive survey

of the linearised dynamics has now been completed (ref. 6). A well-known advantage
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of the time-domain approach is that certain geometrical non-linearities can be

accommodated and, following the success of the linear experiments, work began to

identify non-linear models of the squeeze-film dynamics.

In this paper the authors describe the first series of non-linear experiments.

The objective of these tests was to identify the damping law of the squeeze-film

from records of large amplitude displacements _ single-frequency excitation. This

was achieved by estimating the parameters in n -power velocity models of the

squeeze-film dynamics. The resulting models were validated by using them to predict

the damper-ring's orbits and comparing these with directly observed responses. The

significance of the results is discussed in some detail.

SYMBOLS

c etc.
xx '

c etc.
nxx'

fx,fy

Fx,Fy

f(x,t)

h(x,t)

2k
s

2m

n etc.
xx '

P(T)

Q

T

U ,U
X y

X

x1-x 4

x5-x10

Y

z(t)

squeeze-film damping coefficients (N.s/m)

coefficients in damping law

applied forces in x and y directions (N)

squeeze-film forces (N)

vector functions associated

with parameter estimation

total stiffness of damper-ring retaining spring (N/m)

total mass of damper ring (kg)

exponents in damping law

error covariance matrix

weighting matrix

time (s)

interval of observations (s)

= f /m, f /m
x y

state vector

physical state variables

parameter state variables

vertical displacement of damper ring (m)

horizontal displacement of damper ring (m)

vector of observations
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_n a

( )T

(^)

=k/m
S

denotes matrix transpose

denotes estimate

IDENTIFICATION OF LINEARISED SQUEEZE-FILM DYNAMICS

Before describing the non-linear experiments, the more traditional linear
problem will be defined and the results of some recent llneai identification

experiments will be summarised.

Equations of Motion

Consider a lumped parameter model of a squeeze-film vibration isolator such as

that considered by Holmes (ref. I). In fixed co-ordinates the equations of motion
are written

dZx dx dy
m_-_r + Fx(X, _-_, y, _-_) + ksX : fx

d2y dx d_m d--_ ÷ Fy(X, _-_, y, ) + ksY = fy

(1)

where all terms are defined under "Symbols".

Equation (I) implies that the forces F and F developed within the squeeze-

film are functions of both displacement andXveloci_y in the x and y directions. The

objective of bearing identification is to determine these functions experimentally.

Experimental determination of the functions F and F usually involves two steps:

the choice of a suitable model structure foll_wed byYthe estimation of unknown

parameters in this structure. At the simplest level it is usual to assume that the

squeeze-film damping forces in the x and y directions are proportional to the

component of (damper-ring) velocity in the respective direction. This leads to the

expressions

dx dy
F = c -- F = c -- (2)
x xx dt ' y yy dt

so that equations (I) are uncoupled and identification requires the determination of

the two constants of proportionality, i.e. the viscous damping coefficients c and

T nenC_-esThis type of model was used in the experimental parametric study described by
(ref. 2). In any actual squeeze-film isolator, imperfections in the

construction of the damper-ring and bearing housing will invariably produce cross-

axis damping forces in the squeeze-film. If the cross-axis forces are signicant in

relation to the direct-axis forces then the identification of coefficients in an

uncoupled model (equation (2)) will lead to the misinterpretation of the results.

Such misinterpretation can be avoided by assuming that coupling is present, i.e.

F = c dx dy F = c dx dy
x xx d--t+ Cxy d--t' y yx d-t ÷ Cyy d--{ (3)
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and estimating the four unknown damping coefficients c , c and c Some
x xrecent work by the authors has resulted in a promisingXX'ew e_per_mental _chnique

for determining these four damping coefficients.

Numerical Experiments

In reference 5, one of the authors proposed a scheme of combined state and

parameter estimation for identifying the four squeeze-film damping terms.

Essentially, the four unknown coefficients were defined as state variables and an

algorithm for non-linear state estimation was used to reconstruct the coefficients

from time-series records of the displacement responses of the damper ring to

synchronous excitation. A series of numerical experiments showed that such a scheme

was feasible and moreover that the estimation algorithm was relatively insensitive

to the effects of (zero-mean) measurement noise. Further numerical studies showed

that the scheme could readily be extended to estimate the four damping coefficients

associated with a journal bearing oil-film (ref. 7).

Experiments with a Model Squeeze-Film Isolator

Following the success of the numerical experiments a model squeeze-film

isolator was constructed so that the technique in reference 5 could be applied to

real data. The experimental facility will be described in detail in the sections

which follow. A comprehensive survey of the dynamics of the squeeze-film damper

(ref. 6) showed that the four squeeze-film damping terms could be readily identified

using non-linear state estimator. As expected, there were considerable

discrepancies between the identified coefficients and those predicted by short-

bearing lubrication theory (ref. I). However, by comparing the ability of both

identified and theoretical coefficients to predict the amplitude and phase

characteristics of the isolator's frequency response, it was shown that the

identified coefficients were the more effective, especially for characterising the

cross-axis dynamics.

The application of a non-linear technique to estimate linearised coefficients

may appear to be a computationally inefficient way of solving an apparently simple

problem. However the advantage of this approach is that it can, in principle, be

extended to accommodate certain types of non-linearity. The motivation behind the

body of work described in this paper is to determine if non-linear models of the

squeeze-film dynamics could be identified without imposing unrealistic requirements

on the experimental facility.

NON-LINEAR IDENTIFICATION

Introduction

The theory underlying the linear identification experiments described in the

previous section is based upon the assumption that the damping forces in equations

(2) and (3) arise from small perturbations of the damper ring. Even when this

assumption seems justified there can be large discrepancies between theoretically-

and experimentally-derived coefficients, especially at higher values of static

eccentricity ratio (ref. 2). To investigate these discrepancies, and to be able to

account for squeeze-film behaviour under large perturbations of the damper-ring, it

was decided to attempt to identify the damping law of the squeeze-film. This
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implies t_ estimation of the parameters (coefficients and exponents) associated
with an n -power velocity model of the squeeze-film.

A Damping-Law Model

As part of a related study it has been established that the damping law

associated with a single degree-of-freedom dissipative element can be identified

from forced response measurements (ref. 8). Owing to the significant amount of

cross-axis coupling it was not considered feasible to employ so simple a model of

the squeeze-film. Consequently a tentative model to include cross-axis effects was

proposed, i.e.

dxlnxx .dx, Id_InXYsgnFx = Cnxx d-_l sgn_-_) + Cnxy ( )

F : c
y nyx dxlnyx dy_-_ sgn(_) + Cnyy Idylnyy (_)d-{l sgn

(4)

th
which assumes that the damping forces are proportional to the n -power of the

appropriate components of damper-ring velocity. Identification of such a model

requires the estimation of eight parameters, four coefficients c , etc and four
• n x

exponents n etc. from records of the damper-ring's dlsplacemen_ response. To
xx',

reduce the number of parameters to be estimated in these preliminary experiments it

was decided to assume that the cross-damping terms were reciprocal, i.e. c

c , n = n . This had the effect of reducing the number of parametersn_ be

nyx _x_ to _Xx. The consequences of making this simplification will be discussedes_ima_ea

later.

Combined State and Parameter Estimation

To begin the development of the necessary estimation equations, consider the

substitution of the functions F and F from the damping-law model, equation (4),

into the equations of motion (17. TheYfour "physical" state variables usually

associated with a vibrating system with two degrees of freedom are x I _ Xl, x
dx/dt, x_ _ y and x, _ dy/dt. Substituting these expressions into equations _I) and

(4) and _oting the _x1/dt : x_ and dx_/dt = xL, results in a set of four non-linear

differential equations. A further si_ "parameter" state variables, corresponding to

the six unknowns in equation (4), are defined, i.e. x 5 _ Cnxx/m, x. _ n , x_
c /m, x_ _ n , x^ _ c /m and x_^ _ n . If it is assumed tha_ theX_ime _
nx o x _ n /u

derivatives of _hese six _tra states areY_ero (to characterise time-invariant

parameters) then six further equations emerge to augment the four original state

equations. The ten equations can be collected together and written in the form:

dx : f(x,t) (5)
dt

where

and
: Ix I x2 x3 x4 x5 x6 x7 x8 x9 x10]
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f(x,t) =
m

x 2

x6 x 8

-x5]x21 sgn(x2)-x7]x41 sgn(x4)-_n2X1+Ux

x 4

x 8 x 1
-x71x2[ sgn(x2)-x91x41 0sgn(x4)-mn2Xs+Uy

0

0

0

0

0

0

To characterise the measurements on the physical system, a sensor equation is

introduced:

_(t) = _(_,t) + (observation noise) (6)

where h(x,t) is a vector function which, if necessary, can account for observations

which are non-linear functions of the states. For the problem in hand, however,

assume that the t_o displacement states x I and x 3 are available directly and thus

h(x,t) = Ix I x3] .

Given this formulation, the objective is to employ the information contained in

the vector of observations z(t) over the time interval 0 < t < T to predict the

behaviour of the state vector x over the same interval. _inc_ x contains the six

unknown parameters associated With the damping law of the squeeZe-film, the

estimation of x automatically produces estimates of the unknown parameters. A

useful by-prod_ct of this parameter estimation scheme is that the estimates __ and

_ of the displacement states provide instant prediction of the orbital motio_ of

t_e damper-ring on the basis of the identified model and thus serve to validate the

estimated parameters.

An Algorithm for Non-Linear State Estimation

To estimate the state vector x from the vector of observations z requires an

algorithm for non-linear state estimation. The application of one s_itable

algorithm is described in detail in reference (ref. 5). For the sake of

completeness, the relevant equations are summarised here. The algorithm (ref. 9) is

based upon a predictor-corrector type equation:

d__ : f(_,t) + r(T) {z(T) - h(_,T)}
(7)

dT

the solution of which produces an estimate, denoted _, of the state vector. The

driving term in equation (7) is the vector of residuals {z(T) - h(_,T)} which is

weighted by the time-varying matrix F(T). The matrix r(T) is made up of three

terms, i.e.

282



!(T) = 2 !(T)_(_,T)_ (8)

The matrix P(T) is the error covariance array which evolves in time according
to the equation

8fT(i,T)dP _ 8f(i,T) p + p
dT 82 82

m

8
+ 2 P-_ [H(__,T)Q{z(T) - h(!,T)}]P (9)

and must be computed in parallel with equation (7). The remaining two terms in

equation (8) take account of the structure of the observations, i.e.

H(_,t) _ ah(_,T)/8_

and Q is a matrix which allows constant weightings to be attached to each sequence

of observations.

For the problem in hand the estimation of the state vector x from equation (7)

involves the solution of ten non-linear differential equations. --The matrix P is of

dimension (10 x 10) and thus the estimation of P from equation (9) involves the

solution of one hundred non-linear differential--equations. Since P is symmetric

(ref. 9) only 55 of these equations need to be solved. The only p_actical way of

solving these equations is to employ a numerical method operating on the sequences

of observations obtained from the experimental facility.

EXPERIMENTAL FACILI TY

The model squeeze-film isolator used in the experiments is shown in the general

arrangement drawing, figure I. Essentially the isolator consists of two main

components

(i) a non-rotating damper ring, symmetrically supported by a flexible shaft;

(ii) a bearing housing containing two plain lands, separated by a central

circumferential groove.

The flexible shaft provides the static load capacity while a film of oil in the

annulus between the damper ring and housing provides the damping forces. The oil is

force-fed to the annulus by a pump through holes at the top and bottom of the

circumferential groove. No end seals are fitted and so the lubricant is free to

discharge into a reservoir prior to re-circulation. The critical bearing and

suspension parameters are Bearing land length 12.0 mm; Damper-ring radius 60.0 mm;

Radial clearance 0.254 mm; Damper ring mass (per land) 4.5 kg; Stiffness of

supporting shaft (per land) 250 kN/m. There are no rotating components in the

experimental facility and excitation of the squeeze-film is provided by two

electromagnetic shakers, mounted at right angles to each other, as shown in figure

I. Using this arrangement any desired form of forcing can be provided. In

particular, if each shaker is provided with a sinusoidal signal of identical

frequency and amplitude, but displaced in phase by 90 ° , then synchronous unbalance

forcing is readily simulated.
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The static eccentricity ratio of the squeeze-film bearing is adjusted by moving
the bearing housing in relation to the damperring. The position of the housing is
monitored using mechanical clock gauges. Other static measurementsare the
lubricant pressure at the inlet to the housing and the lubricant temperature as it
discharges from the annulus. In the absence of rotation there is no significant
temperature drop across the squeeze-film.

Instrumentation for the generation of dynamic forces and monitoring of the
responses is shownschematically in figure 2. Forces applied to the damper ring are
measuredby quartz load cells connected to suitable charge amplifiers. The
displacement responses of the damper ring are measuredby two sets of non-contacting
capacitance probes, two in the vertical plane and two in the horizontal plane.
Suitable sequencesof input/output data are gathered for subsequent parameter
estimation by a data-acquisition system comprising a 12-bit analogue-to-digital
converter controlled by a digital micro computer. Data are stored on floppy discs
before being transferred for off-line processing to obtain estimates of the
appropriate squeeze-film parameters.

EXPERIMENTALPROCEDUREANDRESULTS

Immediately prior to each set of tests to identify the non-linear squeeze-film
dynamics, the oil ("Shell" Tellus 27) was pumpedthrough the bearing until a steady
operating temperature was reached. A typical oil temperature was 28_, corresponding
to a viscosity of 0.06 N.s/m. During all the tests the lubricant inlet pressure was
held constant at 7 kN/m2. With the bearing housing locked firmly in the desired
position, the damperring was perturbed by forces supplied by the electromagnetic
shakers. The signals supplying these shakers were sinusoidal and of the same
frequency (20 hz) but displaced in phase by 90°. For the linear tests described in
reference 6 the peak-to-peak amplitudes of the applied forces were limited to
approximately 50 N. which produced displacement amplitudes of around 5-10 per cent
of the radial clearance. For the non-linear tests described here, applied forces of

approximately 250 N. were used to produce peak-to-peak displacement amplitudes of

around 50 per cent of the radial clearance. Experiments involving greater

amplitudes are currently in progress but were not possible originally owing to the

limited range of the displacement probes.

Using the procedure described above, non-linear orbits were generated for nine

equispaced values of static eccentricity ratio and for static attitude angles of 0°,
o o

30 and 90 . At each static equilibrium position 1000 cycles of the steady-state

displacement responses in the x and y direction were gathered. With the chosen

sampling interval of 300 _s this produced some six cycles of vibration data -

sufficient according to the results of numerical experiments. The digitized records

of input forces and output displacements were processed according to equations (7),

(8) and (9). Numerical solutions were obtained using a fourth-order Runge-Kutta-

Merson routine.

The results in figure 3 show the evolution of the elements of the state vector

x with time with the damper ring in the concentric position. Figure 4 shows the

damper-ring orbits measured directly and those predicted from identified models for

zero attitude angle and at static eccentricity ratios of 0.2, 0.4, 0.6 and 0.8. To

illustrate results obtained from experiments where additional cross-axis coupling

was induced in the squeeze-film, figure 5 shows the evolution of state estimates for

an attitude angle of 30° and a static eccentricity ratio of 0.6. Again with an

attitude angle of 30° the damper-ring orbits (direct observations and predictions)
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for eccentricity ratios of 0.2, 0.4, 0.6 and 0.8 are shownin figure 6.

DISCUSSIONOFRESULTS

The results shownin figure 3 show that the identified model predicts the
oscillatory responses of the damper-ring (states xl-x a) and produces steady
estimates of the six damping law parameters (states x_-Xln). All the three damping
coefficients (c., c and c ) assumepositive valuesVand the estimates of the
threeexponents"  ,n [and areallclosetounity- thustendingtoconfirm
that for this oper_ing^6onditi6_ the damping forces are viscous. Models of this

form are fully capable of predicting the measured damper ring orbits, even without

prior knowledge of the position of the orbit in the clearance circle, as shown in

figure 4. Figure 4 illustrates how, owing to the amplitude of the excitation forces

and the relatively soft retaining spring, the orbits are displaced away from the

original equilibrium position and towards the centre of the clearance circle.

Nevertheless, a good approximation to the observed orbit is generated by the

identified model.

The results presented in figure 5 for an attitude angle of 30° and static

eccentricity ratio of 0.6 show how, away from the concentric position, the estimates

of the damping law exponents do not converge towards unity but toward approximately

0.7. The estimates of the direct damping terms are still positive (as in figure 3)

but the cross-term is now negative. Figure 6 shows the measured and predicted

orbits for various eccentricities with an attitude angle of 30° . Some significant

departures from the elliptical shape are now evident but the identified model is

still reasonably successful in reproducing the observed shapes. Taken overall, the

performance of the parameter estimation algorithm appeared to improve as the orbits

become more distorted. It is probably fair to speculate that this is due to the

increasing presence of additional harmonics which improves the correspondence

between the observed responses and the coefficients which are to be fitted. Work is

currently in hand to examine this aspect of non-linear identification using

numerical simulation techniques.

Discrepancies between measured and predicted responses still exist but these

are probably due to the relatively simple non-linear damping model which has been

used as the basis for the present study. Obviously the assumption of reciprocal

cross-damping introduces errors and, as yet, no attempt has been made to include

stiffness effects in the squeeze-film. The absence of stiffness effects must call

into question the physical significance of the damping law parameters obtained from

the experiments. The inclusion of squeeze-film stiffness effects is the subject of

ongoing research.

CONCLUDING REMARKS

In this paper the authors have described an experimental study to identify non-

linear models of a squeeze-film vibration damper. A non-linear filteringt_echnique
has been used to estimate coefficients and exponents associated with an n -power

velocity model of the forces developed in the squeeze-film. The results presented

here have been obtained from processing the displacement responses of the damper

ring to synchronous excitation and so it should be possible to apply the technique

to examine the dynamics of industrial dampers and fluid seals.
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The quality of the empirical fits between the observed and predicted orbits is

an indicator of the success of these preliminary experiments• However there are

various modifications to the present processing algorithm which should improve the

accuracy of prediction and enable the physical significance of the results to be

assessed - obvious modifications include the provision of non-reciprocal cross-

damping terms and terms to account for squeeze-film stiffness.
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Fig. 4 Damper ring orbits with zero attitude angle and various values of static

eccentricity ratio: (a) 0.2, (b) 0.4, (c) 0.6 and (d) 0.8.
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This paper describes the results obtained from an experimental programme

concerned with a parametric identification of the damping and inertial coefficients

of a cylindrical squeeze-film bearing, through an analysis of transient response

data. The results enable the operating range for which a linear model of the

squeeze-film is appropriate to be determined. Comparisons are made between the

estimated coefficients and theoretical predictions. Presentation is by courtesy of

the Council of the Institution of Mechanical Engineers, London.

INTRODUCTION

Accompanying the development of modern machinery has been an increasing demand

for higher running speeds. AS a result critical speeds have been encountered before

the desired running speed of the machine has been reached. The consequences of this

can result in failure of associated components or, in some cases, an inability to

reach the desired operating speed. The present work is concerned with the

squeeze-film damper, which is proving very successful in mitigating these problems.

A manageable and realistic model for a squeeze-film damper can be derived by

applying linearisation techniques to the oil-film forces, which are obtained by

solving the Reynolds equation. This leads to a representation of the _ymamic

behaviour in terms of damping coefficients. The abillty to provide damping is a

feature of this device but there is no capacity to provide linear stiffness as the

latter depends on journal rotation.

The conventional representation of a squeeze-film in terms of damping coeffi-

cients has the attraction that it is very simple to incorporate these coefficients

into a discrete mathematical model of a rotor-bearing system. This approach

implicitly assumes that inertial forces within the oil-film are negligible.

However, theoretical investigations by a number of workers [i-ii] suggest that

inertial forces can be very significant in squeeze-films. Indeed, this is evident if

one considers the "gap Reynolds number"

R e --
fluid inertia force

f]uid viscous force
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where p is the density of the lubricant, _ is the frequency of vibration, c is the

radial clearance in the squeeze-film damper and _ is the viscosity of the lubricant.

In many practical applications R e is of order one, or Ereater. For such values one

cannot expect conventional lubrication theory, based on the Reynolds equation (ie.

on the assumption that R e q i), to give an accurate representation.

In a linearised approach, inertial forces can be incorporated into the model

through the introduction of "acceleration coefficients" in addition to the normal

dampinE coefficients. However, experimental estimates of acceleration coefficients

(or "hydrodynamic mass" effects), in Keometries typical of many squeeze-films, do

not appear in the literature; indeed, inertial effects have not been taken into

account at all in many previous comparisons between theoretical and experimental

dynamic behaviour. This may explain, at least partly, why it has proved so diffi-

cult to obtain satisfactory aKreement between theoretical and experimental values of

the dampin E coefficients.

In the present investigation a transient testinE technique has been developed

and used to obtain the dynamic characteristics of a "short" squeeze-film bearinE,

with a Eeometry typical of that currently adopted in engineerinE applications and

with Reynolds numbers in the ranEe 0.5 < R e < 1.5. The experimental results are

processed using a parametric identification technique to yield estimates of the

dynamic coefficients and these are compared with predictions from existing theory.

Limitations of the theory are highlighted which indicate promising avenues for

further research.

NOTATION

brr, bss direct fluid dampinK coefficients, for the r and s directions,

respectively.

structural dampinE coefficients, for the r and s directions,

respectively.

non-dimensional, direct fluid film dampinK coefficients, for the r

and s directions, respectively.

radial clearance between the journal and the bearing.

direct fluid film inertial coefficients, for the r and s direc-

tions, respectively.

initial displacement

non-dimensional initial displacement (see equation (27)).

time domain response function (see equation 17).

br0 ) bs0

Brr, Bss

c

crr, Css

d

d*

h(u)

kr, ks

Q

m

mH

shaft stiffnesses, in the r and s

land length of the bearinE.

effective, first mode mechanical mass.

hydrodynamic mass (Crr

transverse direction).

directions, respectively.

in the radial direction, Css in the
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P

r

R

Re

s

t

x(t)

x(t )

y(t)

_(_)

Y

70

7*

6

80

8"

£

EO

n

P

AT

_ro, _so

T

hydrodynamic film force.

journal displacement in the radial direction (i.e. in the

direction of the attitude line).

radius of the journal.

Reynolds number (=_c2/_)

journal displacement in the transverse direction (i.e. in a

direction perpendicular to the attitude line).

Lime.

displacement.

non-dimensional displacement.

measured, free-decay record.

frequency response function, defined by equation (23).

frequency response function, defined by equation (23).

dampinE parameter, defined in equations (3).

value of y, in the absence of a fluid film.

non-dimensionalised y (see equations (i0)).

stiffness parameter, defined by equations (3).

value of 8, in the absence of a fluid film.

non-dimensionalised 8 (see equations (I0).

critical dampinE factors, in the case of no fluid film, in the

and s direction, respectively.

eccentricity ratio.

static eccentricity ratio.

absolute viscosity of the squeeze-film fluid.

density of the squeeze-film fluid.

sampling interval.

frequency of vibration.

natural frequencies of undamped vibration, in the radial and

transverse directions, respectively.

non-dimensional time (= _0t).
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TIIEOI_-'I"ICAI,TREATMENT

The equations of motion

The system consists of a mass of finite size (the squeeze-film journal)
attached to the centre of a beam, which is built-in to rigid supports at each end
and which plays the role of a conventional retainer spring. If the central mass is
given some initial,transverse displacement, achieved by a force applied at the

centre of the journal, and then released, the first mode of vibration will be

dominant in the subsequent motion. Thus to a close approximation, the motion can be

described in terms of two second order equations of motion.

In the present investiKation, the squeeze-film bearinK was run under full-film

conditions, that is with no cavitation. In these circumstances, it can be shown,

theoretically, that no cross-damping terms appear.

We thus write, for radial r and transverse s, displacements

(m + Crr)r + (b0r + brr)r + krr = O

(m + css)§ + (b°s + bss)s + kss : 0 ... (i)

Here c denotes inertial coefficients and b dampin E coefficients in the

squeeze-film, b 0 denotes structural damping and k structural stiffness emanatin E

from the spring beam. m is the effective, first mode mechanical mass. Both

equations can be written in the standard form

_ + Tk + 8x = O, ... (2)

where y and 8 are constants. For the radial direction:

b°r + brr
y-

m + Crr

6 - kr
m + Crr

and similarly for the transverse direction.

... (3)

From a free decay test, one can determine y and B, by using a parametric

identification technique. Suppose that a free decay test is carried out in the

radial direction, in the absence of a fluid film in the squeeze-film bearing. Then

brr = Crr = O, and we obtain the coefficients

b0 r
Yo - - 2¢r_o

m

80 kr= - _ro 2
m

... (4)

where _r0 is the natural frequency of undamped vibration and Cr is the damping

factor. On combining equations (3) and (4) one obtains

... (s)

brr = m[y --..880 Y0]

Crr = m( 80 - I)
O
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for the damping and inertial coefficients, where

m can be determined from measurements of k r and from a free decay test without

fluid in the squeeze-film bearing (giving 7o and 80). By combining this information

with estimates of y and 8, from free decay with fluid in the squeeze-film bearing,

one can estimate brr and Crr, by using equation (5). Similarly, measurements of

free decay in the transverse direction can be used to yield estimates of bss and

CSB.

In practice the structural damping is very small and one finds _r0 and _eo by

simply measuring the frequency of vibration, without fluid in the bearing.

Before processing the decay curves it is convenient to non-dimensionalise the

equation of motion (equation (2)). If _0 is the frequency of undamped vibration,

without fluid, then a convenient non-dimensional time is

7 = _0t = 8o_C ... (7)

Also, the displacement x( t ), can be

by the initial displacement, x(O). Thus,

non-dimensionalised by dividing

x(t) = _x(t)
x(o )

Equation (2) can then be recast as

_ + y* X + 8- X = 0

where

=_Y Yy* =

8 8
8_ = - _--

_o z 3o

... (8)

... (9)

... (lo)

are non-dimensional coefficients and differentiation is now with respect to 7. On

substituting these equations into equation (5) we obtain

brr = m_ro [y*/8* - Y0*]

1

crr = m(_. i)

... (II)

and similarly for bss and css.

The damping coefficients

The conventional approach to evaluating the coefficients brr and bss, for a

full squeeze-film is to use the Reynolds equation as the basis of the calculation.

For the general case it is necessary to solve this equation numerically, but simple,

asymptotic results can be derived for

(a) the short bearing: _/R _ 0

(b) the long bearing: _/R _ _.
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The short bearing theory gives the following results[12]

_RQ3] (I + 2 eo 2)
brr = [--_J (i _ e02)5/2

bss L c3 J (i - c02)312

... (12)

The corresponding long-bearing results are as follows[13]

[12_qR3_ ] 1brr = [ c _ - .
(i - CO2)_ (1 Co 2)

FZ2=nR3e]
bss = [ cy--J

2

(2 + ¢ O)(1 - Co 2)%

... (13)

As pointed out earlier, the use of the Reynolds equation implicitly assumes

that inertial forces within the fluid film are negligible. Theoretical studies of

the influence of fluid inertia on the damping coefficients of a squeeze-filmbearing

have been undertaken by Tichy[3] and San AndrOs and Vance[7]. Their results

indicate that, for the particular geometry of bearing studied in this investigation,

and for the range of frequencies of oscillation studied, the influence of fluid

inertia on the damping coefficients is negligible.

The inertial coefficients

A linearised approach to the evaluation of squeeze-film fluid forces allows a

separate evaluation of the inertial coefficients, which arise from the effect of

journal acceleration.

Smith[l] has shown that

coefficients are Eiven by,

for a very short full-film bearing (Q<<R) these

_pR_ 3 2 1

Crr - 12C-- {_ [ , i]}
(i - Co2) _

_pRQ3 2 [i (1 )%]}
Css - 12c {£-_Z-O - Co2

... (x_)

and Crs = Csr = 0. In the upecial case of zero static eccentricity (c 0

limiting operation performed on equation (14) gives

= 0), a

Crr = Css _pR_ 3 (Co = O) ... (15)

12c

This agrees with the result obtained by Fritz for very short bearings, in the

concentric case[2 ].
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For a lonE, ful]-film bearinE (i>>R) the appropriate expressions for the

coefficients are as follows [1]=

_pR3_ 2

err = css - c (c--_T-° [1 (1 - coz )') ... (16 )

and Crs = Csr = O. In the special case where e0 = 0 (concentric operation) equatiOn

(16) reduces to

_pR_J

Crr = Css = _ (E 0 = 0) ... (17)

which is a result first derived by Stokes [14].

It is interestinE to note that, for e0 = 0, the ratio of Crr for the lone bearin E

case to err for the short bearinE case, is from equations (15) and (17).

12(;)2

The dampinE coefficients from the lone and short bearinE theories, for the

concentric case, are in exactly the same ratio (see equations (12) and (13)). It

follows that, for short bearinEs (_ << R), the dampinE and inertial coefficients

are, according to the short bearing theory, considerably less than those predicted

from the lone bearinE theory.

Recently Szeri et al [9] have presented, graphically, numerical values for the

inertial coefficients, Crr and Css , for squeeze-films with finite values of _/R, in

the ranEe 0.2 _ £/R _ 4.0. They found it necessary to introduce an approximation,

based on the assumption that R/R is small, in their analysis but have indicated that

their results should be more accurate than a full short-bearinE approximation,

provided that _/R is small. Their numerical results are in virtually exact aEree-

ment with Smith's short-bearing results (equation (14)) for _/R < 0.5.

2.4 Parametric identification

It was shown in section 2.1 that the damping and inertial coefficients can be

related to the non-dimensional parameters 7" and 6*, which occur in the second-order

linear equation of motion Eiven by equation (9). From the experiment to be des-

cribed one can obtain a free-decay curve - i.e. X(t) versus time. The problem is

then to find, the values of y* and S* for which the solution to equation (9) gives a

"best fit" to the experimental observations.

This is a problem in parametric identification, on which considerable litera-

ture exists (for example see Ref. [15]). Of the various available techniques, we

have here selected the sequential method of Detchmady and Stidhar[16], since this

enables estimates to be obtained from a knowledge of a sinEle measured state

variable (here the displacement of the journal versus time either r(t) or s(t).

Details of the alEorithm are given in the Appendix.

The a]Eorithm operates on a discretely sampled record of the decay curve.

Suppose the experimental values are of y(i_7) (i=0,i,2,...), where _r is the

samplinE interval and 7 is Eiven by equation (7). The data is conveniently scaled so

that the start displacement y(O), is unity. By sequentially processinE the data,

the alEorithm generates least-square estimates of the state vectors X(t) and X(t),
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and also least-square estimates of y* and S*, at the times i_r. These estimates

"track" the experimental data and should converge as time increases - i.e. the

estimated state vector X(t) should approach the measured response, y(t), and the

estimated values of y* and 8- should approach constant values.

To obtain improved estimates of y* and 6,, the algorithm can be applied in an

iterative manner. In the first iteration 9 values of y* and 8* are guessed and used

to start the sequential estimation computation. The algorithm will give estimates

of y* and 8*, at the end of the data sequence_ i.e. at time 7m, where r m is the

time of the last data sample. These estimates can now be used, in place of the

initial guesses, as a start to the second iteration. By repeatin E the iteration a

number of times, the estimates of y* and 8,, at time rm, should converge to constant

values.

Prior to using this procedure on real decay data it was tested thoroughly on

simulated data, from which it could be concluded that the algorithm was an efficient

and useful method, for the present application.

Memory effects

The use of dampin E and inertial coefficients is based on the assumption that

the fluid film forces depend only on the instantaneous velocity and acceleration of

the journal. Although the coefficient approach is simple to incorporate into a

discrete mathematical model of a rotor-bearin E system, there are two serious

objections which can be raised, concernin E its validity:

(i) Implicit in the method is the assumption that the velocity and accelera-

tion are linearly independent variables, so far as the fluid film is

concerned. This poses conceptual difficulties - e.g. how can the accel-

eration be varied whilst the velocity is held constant?

(ii) No allowance is made for "memory" effects, which can be expected when the

bearing is runnin E under cavitation conditions. Even in the case of a

completely non-cavitated bearing, considered in the experimental work

reported here, memory effects may be significant , for sufficiently high

frequency motion, due to the visco-elastic properties of typical lubri-

cants (e. E. see Ref.[3]).

Considering, for example, the case of radial motion only, a general linear form

for the relationship between the hydrodynamic force Pr, and the motion, r(t), is as

follows:

Pr(t) = [ h(t r) r(r) dr ... (18)

Where h( ) is a time domain impulse response function.

The use of equation (18) allows a generalisation of the coefficient representa-

tion discussed earlier. To demonstrate this, consider the simple case of harmonic

motion

r(r) = Ae i_T ... (19)

On substituting this motion into equation (18) one obtains

Pr(t) = Aei_t[a(_) + iD(_)] ... (20)
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where

_(_o) =.ooI h(u) sin cou du

... (21)

Equation (20) may be compared with the corresponding result obtained by the co-

efficient approach, which states that, for a squeeze-filmbearins

Pr(t) = brr r + Crr r .,. (22)

Combining equations (19) and (22) one has

Pr(t ) = Ai_t [-_2 Cr r + i_ brr] ... (23)

Equations (20) and (23) are identical if

... (2t,)

However, the integral representation of equation (18) allows an arbitrary

variation of the "coefficients" with frequency, whereas, according to the coeffi-

cient approach, the damping and inertial coefficients are necessarily independent of

frequency.

It remains to be tested by experiment whether, over a frequency range of

practical concern, the frequency independent coefficient approach gives a satisfac-

tory approximation, or whether there is a significant "memory effect", with the

result that the coefficients must be treated as frequency dependent parameters. In

the latter case, an integral representation, such as that given by equation (18) is

more appropriate than the coefficient representation.

DESIGN OF EXPERIMENT

An outline drawing of the general arrangement of the rig is shown in Fig. I and

a photograph of the rig is shown in Fig. 2. A non-rotating journal is contained

within the circular bearing and is supported by a beam of circular cross-section

which provides a stiffness in parallel with the squeeze-film. A cross-_;ectional

view of the journal and beam assembly is shown in Fig. 3. The journal is heat

shrunk along its entire contact length with the beam, and the beam is rigidly

clamped at both ends. In the experimental work, three different beams were used, of

varying stiffness.

Adjustment of the static equilibrium position in the horizontal direction was

achieved by providing a machined channel in which the bearing housing could slide.

Care was taken to ensure that the journal was accurately aligned with respect to the

bearing. The alignment could De adjusted by moving the position of the beam end

supports, using shims. Angular misalignment could be effectively eliminated by

ensuring that the distance through which the journal could be moved, within the

bearing, was maximised.
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The bearing consisted of two plain lands separated by a central circumferential

groove. Lubricant was supplied from a pump, through top and bottom feed holes and

distributed around the bearing by the groove. No end seals were fitted and the

lubricant was free to discharge into a reservoir prior to recirculation. By

applying an adequate supply pressure to the inlet oil, full lubricant film condi-

tions were maintained with no cavitation.

The experimental technique consisted of pulling back the journal, across the

clearance circle, to a known position by a length of wire looped over the core of a

solenoid. The journal was released by actuating the solenoid. Capacitive probes

then transmitted the transient decay to a microprocessor based data-a(:quisit_on

system. This allowed the dynamic characteristics (i.e. the mass, stiFFness and

damping of the squeeze-film, support beam and journal mass) to be evaluated and

compared with simple linear theory.

EXPERIMENTAL RESULTS

In all the tests reported here the line of centres of journal and bearing, ie

the radial direction, was horizontal when the journal was in its static equilibrium

position. In the radial tests the journal was pulled out radially a further initial

displacement, d, and released. Processing of the results from these tests enabled

estimates of the damping coefficient, brr , and the inertial coefficient crr , to be

derived. In the transverse tests, the journal was given an initial transverse

displacement, d, (perpendicular to the line of centres) and released. From these

tests, estimates of the damping coefficient, bss , and the inertial coefficient, Css ,

could be derived.

It is convenient, henceforth, to refer to a non-dimensional initial displace-

ment, d*, defined by

initial displacement (d)
d* = ... (25)

radial clearance (c)

Tests without fluid in the bearing

For each of the three beams available, tests were carried out, in both the

radial and transverse directions, with no fluid in the squeeze-film bearing. Here

the damping is very small, and is structural in origin; it follows that the measured

natural frequency of oscillation is, in these circumstances, a very close approxima-

tion to the undamped natural frequency

By applying the parametric identification procedure to the results, estimates

of the undamped natural frequencies, _0, and the structural damping factor, ¢, were

obtained. For a given shaft these values were found to differ slightly, in the

radial and transverse directions (the maximum difference was about 5Z),and results

from each direction were averaged. Table 1 summarises the results obtained from

these tests.

Te.st_ with fluid in the bearing

A series of tests was carried out, with Tellus RI0 as a lubTicant in the

squeeze-film bearing, and with a sufficient supply pressure to ensure that full-film

conditions were maintained throughout (i.e. no cavitation). Measured decay curves,

in both radial and transverse directions, were obtained for static eccentricity
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ratios of 0, 0.I, 0.2, 0.3, 0.4 and 0.5 and for initial displacements, d*, of 0.2

and 0.4. The decay curves were normalised, in every case, to give an initial

displacement of unity.

If the journal-bearing system behaves linearly, then t)_ normalised decay

curves should be independent of the initial displacement, d*, if other parameters

are kept constant. Thus by performing a series of decay tests, with differing

initial displacements,and comparing normalised decay curves, one can assess the

range within the bearing clearance circle, for which linear conditions prevail.

At c 0 = 0.O and c o = 0.3, the system behaved linearly (to a close approxi-

mation), in both directions, for start amplitudes up to d* = 0.4. At the highest

static eccentricity ratio studied, c 0 = 0.5, a good collapse of the normalised decay

curves was still obtained in the transverse direction for d* = 0.2 and 0.4, whereas,

in the radial direction there was distinct evidence of non-linearity, for d* = 0.4.

It can be concluded that there is a fairly wide range of journal displacement

position, within the clearance circle, for which a linear mathematical representa-
tion is reasonable.

Figs. 4 (a) to (f) show a set of experimental, normalised decay curves,

obtained with the squeeze-film journal mounted on beam ]. ']"n(: _'sults cover the

static eccentricity range _o = O.0 to 0.5, and relate to both radial and transverse

tests. Similar series of results w_re obtained for beams 2 and 3. In general, for

each beam, _0 value, and chosen direction, results were obtained for d* = 0.2 and

0.4; where these collapsed reasonably well they were averaged to produce curves

such as those shown in Fig. 5. _ere non-linearity was indicated by a lack of

collapse (generally at e0 = 0.4 and c 0 = 0.5, in the radial direction), the result

for d* = 0.2 only was used.

A compavi._n between the results for c o = 0.0 for beam i, in the radial and

transverse directions, (see Figs. 5(a) and (b)) indicates some degree of asymmetry

in the journal bearing configuration. For example, the second, positive overshoot in

the radial direction is appreciably less than that observed in the transverse

direction. The reason for this asymmetry is not clear, but may be due to the

geometry of the oil-feed arrangement (fluid was supplied at the top and bottom of

the central circumferential groove). The corresponding results for beams 2 and 3

indicated that the asyn_netry was much less marked at higher frequencies of oscilla-
t ion.

Beam stiffness results

To enable estimates of the damping and inertial coefficients to be derived from

the free decay data, it is necessary to know the value of the effective, first mode

mass, m. This value will be related to the actual mass of the journal, together

with the mass of the beam, and so will vary, depending upon which beam is used in

the experiments.

In the face of various uncertainties regarding the precise end conditions of

the beams, it wa_; d(_cided to evaluate m, for each beam, from a knowledge of the

natural frequency of oscillation, _0- and the beam stiffness. Thus

k
m _- -

_o 2

will Rive an estimate of m, if k is the effective, first mode stiffness.
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The beam stiffness, k, was determined experimentally, by pullinK the
journal, radially, with a known static force, and measurinK the resulting radial
journal displacement. Table 1 showSthe results obtained for the effective masses

of the journal and beams.

COMPARISON BETWEEN THEORY ANDEXPERIMENT

Parameter estimation

As a first stake in the analysis of the decay data, the parameter estimation

procedure described in section 2 was applied to each decay curve. This yielded

estimates of the parameters y* and 8,, in the linear, second order model Kiven by

equation (9).

FiKs. 6 show typical results of applyin K the estimation method to a particular

decay curve. Here the experimental decay curve of FiE 6(b) was obtained for beam i,

in the radial direction, and with the journal initially concentric (E 0 = O) (see

also FiE. 5(a)). The iterative technique, described in section 2, was used to

refine the estimates of y* and S*, denoted y* and 8", respectively. FiE. 6(a) shows

the variation of y* and 6", with time (measured in units of T = _0 t) during the

fifth iteration; at this iteration stake converEence is achieved, as evidenced by

the fact that the final estimates in the cycle are equal to the initial estimates

(_* = 0.601, 8, = 0.662). FiK.6(b) shows a correspondinK comparison (for the fifth

iteration, aKain) between the estimated displacement state variable, _(t), and the

experimental decay curve_ this shows that the estimated state "tracks" the experi-

mental curve extremely well. A better idea of the deKree of fit achieved can be

obtained by comparin K the experimental curve with the theoretical curve, found by

usin K the final parameter estimates_ this comparison is shown in FiE. 6(c).

The excellent deKree of fit obtained in FiE. 6(c) can only be obtained, of

course, by allowing both the parameters y* and 8* to "float". If one assumes that

the squeeze-film produces only a damping effect then it is necessary to set 6* = 1

and to obtain a best fit by allowinK only y* to vary. Th_s can be achieved, using

the same parametric identification procedure as before, but setting the initial,

off-diaKonal elements of the P matrix to zero (see Appendix); this has the effect

of "lockinK" the 8* parameter to its initially set value, with the result that

optimisation is sought with respect to the y* parameter alone. FiE. 6(d) shows a

comparison between the experimental decay curve and the best-fit theoretical curve,

with 8, = 1.0 and y* optimised (y* = 0.912). A comparison between FiKs. 6(c) and

(d) reveals that the effect of deviations of S* from unity (due to inertial effects

in the squeeze-film) is very siKnificant and that a very poor fit to the data is

achieved by assuminK that only damping is present in the squeeze-film. Similar

comparisons have been made with other decay curves and these lead to a s_mi]ar

conclusion.

DampinK and inertial coefficients

Once y* and 8* have been estimated from a particular decay curve, then the

dampinK and inertial coefficients may be found.

To present the damping results it is convenient to introduce the non-dimen-

sional coefficients per land.
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c 3

Brr = brr 2_RQ3

c 3

Bss = bss _nR--_

According to the short-bearing theory,(equation (12)),

and

(i + 2e02 )
Brr -

(l eo2) 5/2

1

Bss -(I - e02)3/2

... (26)

... (27)

In the experimental rig the following values apply:

R = 0.06 m, C = 2.5/+ X lO-4m, Q = 0.012 m, 7] = 22 x 10 -3 Ns/m 2,

Using these values in equations (26), and equations (ii) one obtains an equation for

Brr (and also Bss ) of the form

Br r = ki Y'cot (i = 1,2,3) (28)
8_ "0"

where

Y*c0r = Y* Y0 .8. ... (29)

is the damping parameter, corrected for the effect of structural damping and k i is a

non-dimensional constant, dependent on the beam used. The appropriate k i values are

given in Table 1

The relationship between the present experimental values of Brr and Bss, and

the corresponding theoretical values, according to both long and short-bearing

theories, is shown in Figs. 7(a) and (b). It is evident that the experimental

values lie much closer to the short-bearing theoretical curve. At zero eccentricity

there is a factor of 300 between the two theoretical values, whereas the experimen-

tal values are only a factor of about 1.5 higher than the short-bearing theoretical

result. There is little indication of any "memory effect", due to changes in the

natural frequency of oscillation.

The inertial coefficients, Crr and Css , defined in section 2, have the physical

significance of hydrodynamic masses. Thus mH, the hydrodynamic mass, is given by

m H = Crr (radially)

= Css (transversely)

Figs. 8(a) and (b) show the variations of m H with static eccentricity ratio,

e0, for the radial and transverse directions, respectively. Here the experimental

estimates of m H are compared with both long and short bearing theoretical values.

The significant feature here is the magnitude of the inertial effect. In both

directions, the hydrodynamic mass is an order of magnitude greater than the short

bearing theoretical prediction. This is rather surprising in view of the small _/R

ratio pertaining in the experimental rig (0.2). For this value of @/R the results

of Szeri et al[9] lead one to expect that the short-bearing theory should give a

reasonably accurate estimate of m H.
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CONCLUSIONS

Damping coefficients for both the radial and transverse directions, aEreed

reasonably well with the short-bearing theoretical results, although the experimen-

tal values were generally higher than the theoretical values. The variation of

damping coefficients with static eccentricity ratio, e0, was very similar to the

variation predicted by short-bearin E theory. Thus, in the radial direction there

was a marked increase in dampin E coefficient with e0, whereas in the transverse

direction this effect was much less significant.

The experimentally-determined inertial coefficients (or hydrodynamic masse_;)

were generally much higher than the theoretical values given by the short-bearing

theory - typically an order of magnitude higher.

The experimentally determined damping and inertial coefficients, for the three

shafts, were found to collapse fairly well, when plotted against static eccentricity

ratio. This is a strong indication that, at least over the frequency range studied

here, "memory effects" within the squeeze film are not significant.

APPENDIX

Parametric Identification of Free Decay Data

General theory

Consider a dynamic system defined by the following differential equation of

motion:

= g(x) ... (AZ)

Here x is an n-vector containing the states, xl, x2, ...,Xn, of the system and

g(x) is an~n-vector function. If the system is stable, and is released from some

initial condition, x(O), then a transient response will result, with the motion

decayin E to zero. Suppose that observations of the output, or response, of the

system are made during the time interval 0 < t < T. An observation vector, y(t)

will be defined by

y(t) = h(x) + (observation error)
~ --

... (A2)

where y is an m-vector output and h is an m-vector function. Here the (observa-

tion error) term accounts for the fact that the output observation is of limited

precision, due to quantisation errors in A/D conversion, electrical noise, etc. The

estimation problem is to estimate the state vector x(T) from the observation

vector y(t), measured in the interval 0 < t < T - i.e. to find the vector x(T), say,

which corresponds to a "best fit" to the observations, and is consistent with

equation (AI).

A "best fit" is most conveniently achieved in a least-square sense. Suppose

that the followin E residual errors are defined:

el(t) = y(t) h(x*) ... (A3)

ez(t) = x* g(x*) ... (A4)
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Here x* is a "nominal" trajectory - i.e. a possible time history of x. From

the residual errors one can form the integral ~

I = _T[ll_1(t)ll + II¢2(t)11 ]dt ... (A5)

o Q2 - w2

where I I'IIQ2 and l l'}lW2 are suitably defined quasi-norms.

Suppose that I is minimised when x*(t) = _(t); a least -squares estimate of x(T) is

then x(T). ~ ~ ~

In practice, y(t) is usually measured at equi-spaced times, ti x idt (i =

0,1,2,...). It is then convenient to use a recursive algorithm, which will

generate sequential estimates of _(t), at times t i . It has been shown by Detchmendy

and Stidhar[16 ], using the method of invariant imbedding, that _(t) can be generated

sequentially by using the following equations.

d_
~ = g(x) + 2P(t) H(x) Q{y(t) - h(_)} ..° (A6)

dt ......

where

T

dP _g p + p [ _g 1 + 2p 8dt a_ a_ a_

T

c.5 >t(y(t>-)(6>))P

Here P(t) is an n x n matrix and Q is an m x m matrix.

allows weighting to be assigned to the elements in the observation vector.

n x m matrix.

... (A7)

... (AS)

The latter matrix

H is an

By integration of equations (A6) and (A7)one can generate estimates, x(t i ), at the

observation times, t i . An initial estimate, x(O) of the start condition, x(o), is

required, but the estimates _(T) will usually ~be insensitive to the choice of

x(O), providing that T is sufficiently large.

le

2o

3.

4.
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TABLE 1

Beam No.

1

2

3

Nat. freq.

(Hz)

33.8

58.8

94.3

Dampin E factor

= Y0*/2

0.010

0.010

0.015

Effective mass

of journal &

beam (kg)

7.73

8.35

9.60

k1

1.88

3.53

6.50
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Figure 1. - Squeeze-film bearing rig. Figure 2. - Photograph of the experi- 
mental rig. 
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Figure 4. - Experimental transient decay results; beam I.
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INSTABILITY OF AN INTERSHAFT SQUEEZE FILM DAMPER IN A

TWO-SPOOL ROTOR DYNAMICS SIMULATOR

R.G. Alderson

Garrett Corporation
Phoenix, Arizona 86010

ABSTRACT

An instability associated with an

intershaft squeeze film damper is de-

scribed. The squeeze film is located

between the intershaft bearing outer

race and the low-speed shaft of a five-

bearing, two-spool test rig. The

instability is dominated by response of

the third system mode to destabilizing

excitation of the type described by

Hibner, et al. Installing a spring

cage in place of the intershaft damper

removes the instability and produces

satisfactory performance throughout the

operating range.

INTRODUCTION

Trends in advanced technology en-

gines are toward significantly higher

turbine inlet temperatures, higher work

stages, increased thrust-to-weight ra-

tios, greater durability requirements,

and reduced life-cycle costs. These

trends are producing departures from

traditional rotor systems that have

significant effects on system rotor

dynamics.

One Garrett design in this area is a

two-spool engine that uses an inter-

shaft roller bearing to support the

turbine end of the high-pressure (HP)

spool. This eliminates the high-

temperature structure otherwise needed

to support the HP turbine-end bearing.

However, the intershaft bearing is a

path for nonsynchronous excitation not

found in traditional configurations.

Shaft diameters are kept to a mini-

mum in order that disk bores and bear-

ing diameters will be minimized. These

measures for improving disk low-cycle

fatigue lives and bearing lives are ac-

complished without requiring the low-

pressure (LP) spool to operate super-

critically. Although many of the modes

encountered in the operating range dis-

play some flexure, the synchronous

flexural critical speeds of the LP rotor

are outside of the operating range.

However, nonsynchronous excitation of

these modes by the HP rotor via the in-

tershaft bearing needs to be considered.

Shafting technology for advanced pro-

pulsion engines has not yet progressed

to the extent that satisfactory opera-

tion can be guaranteed in this regime on

the basis of analytical predictions

alone. Commitment of an advanced engine

design to a configuration incorporating

these features requires a program of

testing with a rotor dynamics simulator.

The dynamics rig designed to simulate

the engine dynamics is a two-spool, co-

rotating system driven by air impinge-

ment. Figure 1 depicts the dynamic sys-

tem in schematic form. Individual

spools are separately controlled and

driven. The LP spool is supported by

three bearings, two straddling the simu-

lated fan, with the third bearing aft of

the simulated LP turbine. The HP spool

is supported by two bearings, including

the intershaft bearing that has the

inner race carried by the HP rotor.

The rotor system is installed in a

rigid frame, with the spring cages used

as bearing supports simulating engine

structural stiffnesses. Each of the

four structure-supported bearings is

provided with an unsealed squeeze film

damper. Centering springs are not used.
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Originally, a squeeze film damper

was also used with the intershaft bear-

ing. This feature was employed in an

effort to exploit fully the benefits of

squeeze film dampers in controlling

unbalance. The oil film was formed

between the outer race and a housing

rotating with the LP spool. The subse-

quent need to eliminate a subsynchro-

nous instability led to removal of this

damper in favor of a spring cage.

Initial rig testing revealed sub-

synchronous whirl that appeared at a

part-speed condition and persisted

throughout the operating range. The

instability did not grow to destructive

proportions, probably due to relatively

well-balanced rotors. It was the domi-

nant feature of the rotor response,

however, and unacceptable for engine

operation.

The intent of this paper is to de-

scribe the characteristics of the

instability, and to discuss the influ-

ence of the intershaft squeeze film

damper.

EARLY TEST EXPERIENCE

Figure 2 shows the speed schedule

followed in early tests to approximate

engine conditions. Acceleration

through the speed range revealed some

system modes synchronous with the LP

rotor, while others were synchronous

with the HP rotor. Initially, the LP-

synchronous modes tended to be more

severe. But trim balancing effectively

reduced all synchronous response to

relatively low levels. Subsynchronous

response also was observed, beginning

at a part-speed condition and persist-

ing throughout the speed range. Trim

balancing was not effective in reducing

the amplitude of the subsynchronous

response.

Figure 3 is an RPM spectrum map that

typifies the system response. This

data was obtained from a proximity

probe sensing displacement of the simu-

lated HP turbine wheel. This spectrum

map is identical in character to maps

for the simulated HP compressor and LP

turbine wheels. These similarities em-

phasize the dynamic coupling provided by

the intershaft bearing. Proximity probe

data from the simulated fan showed less

prominent subsynchronous response,

probably due to the combined effects of

fan mass and LP shaft flexibility.

Figure 3 shows the main subsynch-

ronous response near 120 Hz, with a sec-

ondary subsynchronous response near

60Hz. The maximum amplitude of the 120

Hz component is in the range of 0.10 to

0.15 mm (4 to 6 mil) peak-to-peak for

the HP turbine, and about twiue that for

the LP turbine. The 120 Hz component

displays an increasing trend from its

initiation through maximum operational

speed for the rig. This response is

regarded as an instability. Although

these subsynchronous whirl amplitudes

are not a threat to rig integrity, the

presence of an instability would not be

tolerable for engine operation.

CHARACTERIZATION OF RESPONSE

Figure 4 combines Figures 2 and 3

with the results of undamped whirl speed

calculations. The solid lines define

system whirl frequencies for various

whirl ratios (LP spin speed/system whirl

speed). The analysis was done in the

whirl frame of reference, and extended

from zero whirl ratio (nonrotating sys-

tem) through unity whirl ratio (LP un-

balance excitation). Whirl ratios cor-

responding to HP unbalance excitation

vary according to the speed schedule.

At 100 percent speed, the whirl ratio

corresponding to HP unbalance is between

0.5 and 0.6.

Figure 4 also shows that the analyti-

cal model is in reasonable correlation

with the test data. Particularly

prominent is the agreement between re-

sponse peaks and calculated whirl speeds

for LP unbalance excitation (unity whirl

ratio). The first three mode shapes

corresponding to LP unbalance excitation

are shown in Figure 5. Amplitude and

phase data from the various displacement

transducers are consistent with these

mode shapes. All three modes display
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shaft flexure but are not dominated by

it. Analysis shows that most of the

strain energy in these modes results

from support participation rather than

shaft flexure.

Figure 4 suggests that the sub-

synchronous activity around 60 Hz and

120 Hz is associated with the first and

third system modes, respectively. Fig-

ure 5 shows that these two modes (par-

ticularly mode 3) involve participation

by the intershaft bearing and squeeze

film damper.

INSTABILITY OF INTERSHAFT DAMPER

The intershaft bearing is installed

with the inner race mounted on the HP

rotor. The squeeze film is formed be-

tween the outer race and a housing that

rotates with the LP rotor. The damper

is of the open-end type. Following the

approach of Hibner, Kirk, and Buono

(Ref. I), the intershaft damper was

modeled by a solution of the Reynolds

Equation:

6 2 _8 + _-{ =

3h 3h (i)
(wl + w2 - 2_ _ + _ 3-[

Making the "short bearing" assump-

tion permits the first term on the left

to be neglected. For steady whirl in a

circular orbit,

h = C (I + e cose) (2)

as is shown in Figure 6.

Then (i) reduces to

32P 12pc sin8 (WL__)
= - C 2 (I+_ cos0) 3

(3)

Assuming that the pressure is symmetric

across the width of the squeeze film,

(3) can be integrated to obtain the

pressure distribution:

6_/(z2-L_ _ sin@

P(Z,8) = - C2 (l+e cosS) 3
(WL-%) (4)

For the open-end damper, the circumfer-

ential pressure distribution is approx-

imated by the "w-film" in which pressure

is positive over half of the annulus and

zero elsewhere. Two cases need to be

considered in the integration of the

pressure to obtain the radial and tan-

gential damper forces. In the first

case, the damper spin speed is less than

the journal whirl rate. The opposite

situation constitutes the second case.

Case 1 - _ > WL, P=0 for 0_< 8_<

L

P(Z,8) cos8 RdSdZ =

2_RL3 _ (%-wL) (5)
- C2 (i-_2) 2

which tends to center the journal.

L

Ft = 2 _2n/_[ P(Z,8) sin@ RdedZ =
o

- 2c _ (i__213/2 (b-w E) (6)

which tends to oppose whirl (stabiliz-

ing).

Case 2 - $ < WL, P=0 for _ _< 8 <_ 21T

L

F r = 2 P(Z,e) COS@ RdedZ =

2pRL 3 e2

_ C2 (1__2) 2 (WL-_) (7)

which tends to center the journal, as

in Case i.

L

F t =/o_/o _ P(Z,8} sin8 RdedZ =

+ (i_e213/2 (WL-_)
(8)
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which tends to promote whirl (destabil-

izing). This is the opposite of the

effect noted in Case i.

This analysis, together with the

mode shapes shown in Figure 5, offers

an interpretation of the system re-

sponse shown in Figure 4. As the LP

rotor is accelerated, LP-synchronous

response in each of the first three

system modes can be seen at LP speeds

around 3300, 5000, and 7200 rpm. Ac-

cording to the analysis, intershaft

damper forces due to LP-synchronous

whirl are small since _ = W L. Simulta-

neously, HP-synchronous whirl is pre-

sent due to excitation of the second

and third system modes by the HP rotor.

Excitation of the sixth mode probably

occurs also. Stabilizing forces are

developed in the intershaft damper due

to HP-synchronous whirl since _ > W L.

Evidently these stabilizing forces, to-

gether with damping furnished by the

grounded squeeze film dampers, are the

dominant influences on system response.

For LP speeds above 8000 rpm, the

character of the response changes.

Following the expected sharp drop in

LP-synchronous response as the LP rotor

passes through the third system mode, a

subsynchronous response appears around

120 Hz. The amplitude of the sub-

synchronous response continues to in-

crease throughout the operating range.

The unique feature of the third system

mode (in contrast with the first and

second modes) is the degree of partici-

pation of the intershaft damper. This

is illustrated in Figure 5.

A plausible explanation of the re-

sponse derives from the abundance of

transients in the system. Noncircular

damper orbits and the nonlinearity of

squeeze film damper forces are primary

sources of transients which ordinarily

are of little consequence. Even though

system response to transients will tend

to include response in the system

modes, system damping usually suppres-

ses the transients immediately. But

because the intershaft damper partici-

pates strongly in the third system

mode, destabilizing forces become signi-

ficant since _ < W L for this mode. It

appears that the secondary subsynchro-

nous response around 60 Hz that occurs

in the same speed range as the 120 Hz

instability is a similar but weaker phe-

nomenon. Damper participation in the

first system mode is significantly re-

duced compared with the third mode.

Virtually no intershaft damper activity

occurs in the second system mode, nor is

there subsynchronous response associ-

ated with it.

REMOVAL OF INSTABILITY

A limited test program was undertaken

in which various system parameters were

modified in an attempt to remove the in-

stability. These modifications included

clearance changes in the intershaft dam-

per, the HP compressor-end damper, and

the LP turbine-end damper. Support

stiffness at the LP turbine-end bearing

also was varied. Significant reduction

of subsynchronous response was not ob-

served.

Removal of the instability was accom-

plished by refitting the test rig with a

spring cage in place of the intershaft

damper. The result of this modification

is shown in Figure 7, an rpm spectrum

map of the simulated HP turbine response

after the refit. The subsynchronous

responses that appeared previously above

8000 rpm are absent. Although a

slightly different speed schedule was

used in this test, many of the synchro-

nous features identified previously can

be seen. The speed schedule modifica-

tion does not affect the validity of the

test. The modified speed schedule was

followed merely to give a better simula-

tion of engine conditions than the

schedule shown in Figure 2.

CONCLUSIONS

Use of a squeeze film damper in an

intershaft application is responsible

for the instability observed during

testing of a two-spool rotor dynamics

simulator. Replacing the intershaft
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damper with a spring cage removed the

instability. A limlted program of

testing alternate damper clearances and

support stiffnesses revealed no signif-

icant effects on the instability. The

instability was driven by destabilizing

hydrodynamic forces in the intershaft

damper that develop when the system

tends to whirl at a speed less than the

damper spin speed. The instability

appears to be associated with the third

system mode, in which the intershaft

damper is influential.

C Damper Radial Clearance

e Eccentricity

F r Damper Oil Film Radial Force

F t Damper Oil Film Tangential Force

h Damper Oil Film Thickness

P Damper Oil Film Pressure

R Damper Radius

t Time

NOMENCLATURE

Z Damper Axial Coordinate

Eccentricity Ratio

8 Angle From Line of Centers, In Direc-

tion of Rotation

Oil Kinematic Viscosity

$ Journal Whirl Rate

W 1 Inner Journal Spin Speed

W 2 Outer Journal Spin Speed

W L LP Rotor Spin Speed
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Figure i.

ERSHAFT BEARING

Rotor Dynamics Simulator Schematic.
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A NOVEL FORM OF DAMPER FOR TURBO-MACHINERY

R.D. Brown and J.A. Hart

Herlot-Watt University

Riccarton, Edinburgh EHI4 4AS
Scotland

Anti-swirl vanes are used by some manufacturers to delay the full development of

half speed circulation in annular clearance spaces. The objective is to reduce

the aerodynamic cross-coupling in the forward direction. The novel feature of

a jet damper is a number of tangential nozzles discharging against the rotor surface

speed. Some preliminary results on a 33.9 Kg rotor demonstrate that significant

reductions in amplitude are obtained at the synchronous critical speeds.

INTRODUCTION

The vibration of rotating machinery is due to a large number of forces which act
on the surface of a rotating shaft. These forces include mechanical unbalance,
bearing forces and fluid forces from impellers, seals, diffusers and labyrinths
among others. If the response to the net action of all these forces is excessive
the result is an unacceptable machine. An increase in damping of the rotor system
can reduce the vibration response to acceptable levels.

Some experimental work on a small scale test rig has demonstrated that high speed
tangential flow acting on the surface of a rotor can produce significant cross-
coupling forces. If the direction of the flow is against the surface velocity
then additional forces acting against rotor motion can be produced. These forces
will considerably reduce response to synchronous unbalance and may also combat
forward sub-synchronous whirl. A major advantage is that these forces act in the
same direction as external damping but do not depend significantly on rotor motion.

An experimental test rig has been constructed to demonstrate the feasibility of
the jet damper concept to reduce synchronous and sub-synchronous whirls in the
forward direction. The rig has been designed to explore the effects of jet velocity
and surface roughness on the magnitude of the force produced. The aim of the
experimental work is to produce design data for a damper on a full size machine.

Among the potential advantages of a jet damper are the ease of fitting to existing
machines, using a shaft extension if necessary. If such a damper is installed
it can be left in an un-operational state until required. For example run-down
or the detection of sub-synchronous vibration. Tangential flow on the rotor surface
can then be initiated using a fast acting solenoid or fluidic valve. Damping forces
can then be introduced as and when required.
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C

H

L

P

R

Fx, Fy

Kxx, Kyy

Kxy, Kyx

K-xx, Kyy

K-xy, -Kyx

f

NOMENCLATURE

radial clearance

total head

length

static pressure

radius

fluid forces

direct stiffness coefficients

cross stiffness coefficients

non-dimensional direct
stiffness coefficient
non-dimensional cross
stiffness coefficient

friction coefficient

h

n

u

u

Re

@

P

T
O

CO

local radial clearance

eccentrcity ratio

mean fluid circumferent-
ial velocity
local fluid
circumferential velocity
Reynolds Number

peripheral angle,measured
from minimum gap

density

rotor displacement

wall shear stress

angular velocity

Kinematic viscosity

BACKGROUND

Significant vibration response in rotating machines is either forced response or
instability. Both types of response can be reduced by external damping.

Forced Response

Response is largely a matter of unbalance distribution especially where flexible
rotors are involved. In certain cases a rotor that was initially well balanced
may have been running for a long time at a running speed considerably above a natural
frequency. The original balance is often disturbed by a combination of blade erosion
and deposits from the process fluid. For large machines not fitted with a braking
mechanism the run down time is considerable thus allowing a significant time at
speeds near resonance. This problem is recognised in the petro-chemical industry
by specifying that vibration measurements are obtained during run-down tests. High
response is due to the small damping of the natural frequencies of the rotor system.
One well known method of reducing vibration response is to increase damping.
However conventional methods of damping rely on using the motion of the vibrating
body itself to provide the damping force e.g. an oil dash pot or shock absorber.
As the motion is necessarily small, viscous fluids are normally used to provide
sufficient damping forces. For rotating machinery squeeze film bearings are often
used particularly in aero engines.

Instability

A common problem found in high speed turbo-machinery rotors is instability due
to increases of speed and/or load beyond the stability boundary. The problem usually
manifests itself as an increase in the vibration level at a non-synchronous
frequency. In most cases this frequency is a natural frequency of the system which
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is insufficiently damped. As this frequency is often exceeded in the acceleration
to running speed its reappearance as a result of instability is normally
sub-synchronous i.e. at a frequency less than that corresponding to running speed.
However unlike synchronous resonance it is usually impossible to pass through
successfully without either reduced load or speed.

Instabilities of this sort are generally referred to as aerodynamic cross-coupling.
A simple form of cross-coupling can be modelled by a lateral motion of the shaft
causing a force perpendicular to that displacement. When the force vector is aligned
with the translational velocity of the precessing shaft it behaves as a negative
damping force. Experimental measurements of cross-coupling forces of this general
nature are well established in bearings, impellers, blade rings and seal passages.
In small annular clearances, typical of labyrinth seals the inlet flow, mainly
axial, develops a strong circumferential component as a result of friction from
the rotating shaft. Eventually the mean tangential component is equivalent to
half the surface velocity of the shaft. Following a suggestion in reference i
some manufactuers fit anti-swirl vanes at the entrance to labyrith seals to impose
a backward swirl to the inlet flow. This delays the full development of the mean
circumferential half-speed swirl and so reduces any cross-coupling that may be
present in the labyrinth. A combination of a roughened stator with a smooth rotor
has been shown in reference 2 to reduce the mean tangential velocity. However
neither of these approaches essentially alters the basic nature of the
circumferential flow.

Principle of Damper

The damper uses high velocity backward facing jets impinging tangentially on a
roughened rotor surface which can produce significant increases in damping forces
and substantially improve stability characteristics of turbo-machines. The
essential feature of the jet damper is to use a number of high speed jets of fluid
to give a relative motion in the appropriate direction to provide a damping force.
As the relative velocity is largely independent of shaft orbital motion, high
velocities can be used and therefore low viscosity fluids e.g. air are practical
to generate forces of considerable magnitude.

PRELIMINARY RESULTS OBTAINED USING A PROPRIETARY ROTOR KIT

A proprietary rotor kit was adapted by the manufacture of a chamber and nozzle
assembly to provide an annular space around which fluid could be circulated at
high velocity. The rotor consisted of a 280 mm. long shaft of 9.5 mm. diameter,
with an 0.846 Kg. steel disc of diameter 76.2 mm. mounted at midspan. This disc
was supplied with its surface ground to give a smooth finish. Supporting the shaft
at either end were brass bushes mounted in housings with a single rubber '0' ring
between the bush and housing. The rotor was driven by a 380 W reversible d.c.
electric motor connected to the shaft through a flexible coupling. On running
the rotor it was found that the first critical speed was at 3150 r.p.m. (52.5 Hz.),
thus the maximum motor speed of 7000 r.p.m, meant that rotor speeds above twice
the first critical could be achieved. More details are discussed in reference
3.

Plenum Chamber and Nozzle Assembly

An exploded view of the chamber and nozzle assembly is shown in figure 1. This
was constructed from three aluminium plates arranged in a sandwich assembly, forming
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a chamber into which a compressed air supply could be fed. Mounted on one plate
were four nozzles of 10 degrees included angle and 0.50 mm. by 9.50 mm. exit area.
These nozzles directed high velocity air tangentially onto the surface of the central
mass. Radial clearance between the stator and the rotor was 0.46 mm.

A pair of non-contact proximity probes, placed 90 degrees apart, measured the shaft
vibration at a location approximately midway between the central mass and a bearing.
The output from these probes was fed into an X-Y oscilloscope and a real-time
spectrum analyser which derived the frequency componentsof the vibration.

Test Procedure and Results

The tests conducted can be classified into two main groups

(a) Effect of Fluid Flow on Rotor Stability

While running the rotor at constant speed, the plenum pressure was carefully
increased and both the resultant orbit and response spectrum noted. Any instability
could then be observed from the orbital pattern and the plenum pressure at the
onset of this instability recorded. This test was repeated for flow in the same
(forward) and opposite (reverse) direction to shaft rotation, and for a number
of rotor speeds.

It was found that an instability could be induced by the circumferential flow of
air in the annulus. The pressure ratio (plenum presure/atmospheric pressure) at
the onset of this instability is plotted against the speed ratio (rotor speed/first
critical speed) on figure 2. It can be seen that the stability boundary appears
to be unaffected by the direction of rotor rotation. However it should be noted
that the nozzle exit velocity is of the order of i00 - 250 m/s compared with a
maximum rotor surface speed of only 25 m/s. The destablising forces generated
are therefore of similar magnitude regardless of the direction of rotation. This
test was found to be highly repeatable, the variation in the required pressure
ratio being about 3%.

(b) Effect of Fluid Flow on Rotor Response

The averaging facilities of the spectrum analyser were used to obtain smoothed
spectral densities of the rotor response for constant speed tests at various values
of plenum pressure. This was repeated for a number of rotor speeds in both the
forward and reverse direction.

A typical set of frequency spectra for the rotor response are shown on figure 3.
Similar data was first shown in reference 4. These show the response for various
running speeds at a steady plenum gauge pressure of 41.37 kN/m 2 (6.0 psig). This
pressure corresponds to a nozzle exit velocity of about 230 m/s. As a threshold
speed is reached sub-synchronous vibration suddenly appears the frequency of which
was found to be about 50.4 Hz. This frequency is slightly less than the system
resonant frequency of 52.5 Hz. A typical orbit is also shown once sub-synchronous
behaviour is initiated for both forward and reverse flow.

While performing the experimental work it was observed that if rotation was in
the opposite direction to the high velocity fluid flow, then any value of plenum
pressure tended to reduce the amplitude of the synchronous vibration. This reduction
was pronounced at speeds near the first critical speed.
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As a result of this preliminary experimental work it was concluded that the use
of reverse flow as a means of reducing synchronous vibration amplitudes in the
speed range around the first critical was an effect worthy of further investigation.
It should be noted that these results were obtained using nominal values of radial
clearance and a smooth rotor surface. Variation in these parameters could lead
to experimental data for the optimal design of an industrial device.

EXPERIMENTAL TEST RIG

The main objective of the more elaborate test rig was to isolate the circumferential
velocity induced effects from other rotordynamic phenomena. As this work is
concerned with the damping of supercritical rotors, the maximum rotor speed must
lie well above its first critical. Further requirements of the rig were a realistic
rotor velocity and ease of disassembly and modification.

The experimental approach being undertaken is to measure the effect of the fluid
flow on the vibration response of the rotor for a number different values of annular
chamber geometry and rotor surface roughness. Measurements are planned under various
fluid supply pressures.

Overall Layout

The test rig consists of a vertical flexible shaft onto which a central disc is
mounted, surrounded by a nozzle chamber. Into this chamber, pressurised fluid
is fed before being injected tangentially onto the disc surface by virtue of the
nozzle arrangement.

Consistent with the need to isolate other rotordynamic phenomena, the rotor is
mounted vertically in self aligning ball bearings thus eliminating gravitational
and oil-film effects respectively. These grease lubricated bearings allow for
the angular misalignment caused by vibration of the flexible shaft.

Component Design

The rotor was constructed from a machined steel shaft of about 45 mm. diameter

onto which three discs were shrunk. A central steel mass 152 mm. long and 149
mm. in diameter, provided a rotor surface velocity of up to 80 m/s at the maximum
rotor speed. In order to avoid any problems due to an internal friction mechanism
at the shrink fit interface, the shaft was undercut so that the contact was only
over two 38 mm. lengths. Two brass discs 38 mm. wide and 123 mm. in diameter were
similarily attached to the shaft at about one quarter and three-quarters span.
These discs performed two basic functions. They provided a surface, free from
residual magnetic inpurities, from which the rotor deflection could be measured
using a pair of non-contact proximity probes. Secondly, these discs acted as a
safety device such that if excessive rotor deflection occurred then the disc would

come into contact with a PVC guard ring before damage was done to the nozzle assembly
by the central rotor mass. Following fabrication, the complete rotor assembly,
of mass 33.9 kg, was finished ground to obtain the required surface finish and
concentricity tolerances between the discs and bearing journals. Tapped holes
were machined in the end faces of the central disc into which grubscrews could
be inserted in order to partially balance the rotor. A known amount of unbalance
could then be supplied in order to investigate the unbalance response of the rotor.

At the design stage the rotor was modelled using a computer program available within
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the department. This program calculates the critical speeds, mode shapes and forced
response using a transfer matrix/Rayleigh-Ritz method. This software is described
in more detail in reference 5. Utilising this program the rotor was designed to
have a first critical speed of about 4200 r.p.m.

Drive was by means of a horizontally mounted 8.5 kW variable speed reversible DC
motor with the motor output shaft being connected to a right angle gearbox of ratio
I.I through a flexible coupling. Using a timing belt and toothed pulleys of ratio
1:3.33, a maximum rotor speed of 8000 r.p.m, could be achieved.

The rotor was mounted in a casing consisting of three main sections - the upper
and lower body and a central chamber which housed the nozzle assembly. These
components were fabricated from steel tube onto which flanges were welded. To
ensure concentricity throughout the assembly, each body had spigots machined thus
ensuring a total eccentricity of not greater than 0.025 mm. The upper and lower
bodies were press fitted with steel rings which acted as mounts for the PVC guard
rings. The upper bearing housing was bolted to the upper body and the lower housing
to a plate which was mounted between the lower body and the base. A sectioned
assembly of the main body of the test rig is shown on figure 4.

Compressed air was chosen as the working fluid being supplied to the test rig from
the departmental compressors via a receiver, filter and regulating valve. Four
delivery pipes supplied the fluid to the plenum chamber which allowed a settled
pressure to be achieved before entry to the nozzle assembly. Machined aluminium
blocks were arranged to create eight convergent nozzles of about I0 degrees included
angle. The nozzle block geometry and a section through the assembly are shown
in figure 5. These blocks were assembled in six layers of eight blocks each block
being located by a spring dowel pin into its neighbour. Steel rings top and bottom
of the stack allowed eight through bolts to fasten the assembly. The exit dimensions
of each nozzle formed by the build up of six blocks was 0.51 mm. by 127 mm. with
the geometry being such that the flow was tangential to the rotor surface. The
flow discharged through four ports in the wall of the upper and lower bodies. Figure
6 shows the built up nozzle assembly.

Experimental Parameters, Procedure and Instrumentation

The experimental parameters are:

(i)
(ii)

(iii)
(iv)

(v)

Rotor speed
Plenum pressure and mass flowrate
Radial clearance between nozzles and rotor

Rotor surface roughness
Unbalance

For each setting of these parameters the rotor response is measured at the upper
and lower brass discs.

Rotor speed was measured by a proximity probe mounted in the upper bearing cover
plate. A small slot cut in a disc mounted on the shaft end provided a once per
revolution signal for an electronic counter. Plenum pressure was measured at eight
locations equi-spaced around the chamber using diaphragm type pressure transducers.
These tappings provided information regarding any assymetry in the plenum
circumferential pressure field. The fluid mass flowrate through the rig was measured
by a commercially available flow sensor. Mounted on the main supply line to the
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rig downstream of the regulating valve, this consisted of a device which measures
the difference between the meandynamic and static pressure in the line. Measurement
of this difference and the flow temperature allowed the flowrate to be calculated
by reference to the flow instrument manual. Further experimental values recorded
included the plenum temperature and the rig outlet pressure and temperature. A
pressure tapping was also made through the nozzle assembly and into the annular
space such that the pressure at the exit from a nozzle could be recorded. A close
up of the main body of the test rig is shownin figure 7.

Whereasthe tests regarding the effect of fluid flow parameters on the rotor response
can be carried out without any modification of the test rig, the variation in the
radial clearance and the rotor surface roughness require stripdown and reassembly.
These two parameters can be altered by means of steel sleeves which are machined
to fit over the central rotor mass, secured with setscrews. The external diameter
and machining of these sleeves dictates the radial clearance and surface roughness
employed.

During a typical test run, analysis of the signals generated by the four proximity
probes is carried out using a real-time spectrum analyser. Averaging and
decomposition of the time histories into frequency spectra can then be carried
out while a test is proceeding. On completion of a test, averaged time histories
and frequency spectra are transferred to a disc file via an IEEE interface unit
controlled by a microcomputer. Supplementary data such as the plenum pressure
field, temperatures and flowrate data can be added to this file via the computer
keyboard. Data analysis, hardcopy output and graphical presentation can then be
carried out as required. A schematic diagram of the complete test rig and
instrumentation is shown on figure 8 while figure 9 illustrates the complete
experimental set up and data logging equipment.

On running the rotor a casing resonance which lay within the speed range was
observed, thus necessitating the fabrication of four angled struts which stiffened
the rotor casing. With this modification in place the first critical speed was
raised to about 5000 r.p.m, due to the increased support stiffness. Two critical
speed close to one another were observed due to a slight anisotropy of the casing
and supporting frame stiffness. The structural resonance was not completely
eliminated however the vibration amplitudes produced were considerably reduced.

EXPERIMENTAL RESULTS

All experimental measurements of response presented in figures 10 - 12 are obtained
by ensemble averaging of 256 time records from which time averaged orbits can be
plotted.

Figure 10 and figure 11 show the response at the upper brass disc for a combination
of reverse flow, a smooth rotor surface and a radial clearance of 0.508 mm. The
two plots shown represent the orbits of significant magnitude in the speed range
thus corresponding to the two critical speeds. The outer orbits are obtained with
no flow present whereas the smaller time averaged orbits are obtained as a result
of reverse flow being present. Each successive orbit represents a pressure increase
of 6.98 kN/m 2 (i.0 psi.) in the plenum chamber.

It is obvious that a distinct reduction in the response at these two speeds is
obtained by the introduction of reverse flow in the annular space around the rotor.
A plenum gauge pressure of 34.5 kN/m 2 (5.0 psig.) can be seen to reduce the response
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by over 50%. This pressure corresponds to a mean air velocity at nozzle exit of
around 70 m/s compared with a rotor surface speed of about 40 m/s. This velocity
is calculated from the plenum pressure and temperature and a single static pressure
measurement near a nozzle exit.

The orientation of the ellipical orbit can be seen to change as the pressure
increases as would be expected by the introduction of a tranverse force acting
on the rotor. These orbits result from residual unbalance only and thus this change
in orientation cannot be directly compared to conventional phase angle.

The effect of reverse flow on rotor response was measured for a number of rotor
speeds in the region of resonance and some results are shown on figure 12. Each
point on this graph represents a stable orbit with no significant non-synchronous
components visible on the frequency spectra.

Not only are the magnitude of the two peaks corresponding to the critical speeds
reduced, but a considerable reduction is evident across the speed range. As the
vibrational amplitudes in the region of resonance are controlled by the amount
of damping present, it would appear that reverse flow has dramatically increased
the system damping. Both synchronous peaks appear to be shifted to a higher
frequency as would be predicted by a single degree of freedom model with increased
damping. A reduction in the system natural frequency might be expected due to
the negative stiffening of the Bernoulli Effect (See Appendix A). However the
experimental results would suggest that the increased damping dominates this movement
of the peaks.

The above results show that a reverse flow of relatively low velocity considerably
reduces the synchronous response of the rotor. The effect of surface roughness
and radial clearance may lead to even greater reductions being possible. Results
to date illustrate that reverse flow may be a feasible and reliable basis for the
development of a damper to be used on industrial turbomachinery.

JET DAMPER DESIGN

The concept of a jet damper has been shown to work on a laboratory scale. However
it is necessary to demonstrate that it is practical for a full size machine. If
we consider a compressor of about 90 Kg. mass and a natural frequency of 80 Hz.
then the shaft stiffness is around 23 x 106 N/m.

Assuming the following data for a jet damper:

R = 70mm

L = 50 mm

p = 1.22 Kg/m
= 150 m/sec

C = 0.5 mm

then: RL PU 2
2C - 96000 N/m

Therefore the direct stiffness coefficient (see Appendix A) is about 600,000 N/m
which is 2.5% of the shaft stiffness.

The magnitude of the cross-stiffness depends on the value of the friction coefficient
f. For the assumed conditions the Reynolds number based on mean flow _ is 5100.
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In this region the friction depends on the roughness and the majority of the data

available is only concerned with smooth or moderately rough surfaces. If the surface

is deliberately roughened then f could lie between 0.01 and 0.1. In this case

the cross stiffness could be as large as 60,000 N/m. This is a significant fraction

of the cross-stiffness magnitude associated with impeller and diffuser instability.

Hence two or three dampers of these dimensions suitably located could act against

forward whirl and so increase the stability margin.

If the friction force is too large (a combination of a number of damper jets with
high velocity) there is a danger of promoting a backward whirl as discussed above.
An arrangement which incorporates a degree of semi-active control would be necessary.
A prime requirement would be fast acting valves controlling the nozzle flow. However
this would be alleviated if the essential repetitive nature of the rotor motion
was taken into account.

APPENDIX A

STIFFNESS COEFFICIENTS

The basic purpose of a number of tangential jets is to obtain a high circumferential

flow acting against the forward rotation of the rotor. A simplified analysis assumes

a constant circumferential flow in an annular channel at the periphery of a spinning

rotor, figure 13. When the rotor is concentric with the stator the fluid friction

is a pure torque due the mean flow u in the radial clearance C. However when the

rotor is moved laterally the overall effect of the friction force acts at right

angles to the displacement. When the direction of the jets is against the forward

rotor motion the friction force acts against forward precession thus giving extra

damping.

Direct Stiffness

With regard to Figure 13 a displacement 6 in the positive x direction produces
a normal pressure distrituion on the rotor surface which can be obtained using
Bernoulli.

P + ½ pu 2 = H

Resolving pressures:

Fx = -RL (H- ½
0

pu 2) cos Ode , Fy = -RL/_(H- ½ pu 2) sine de

Since h = C (1 - ncos8), n = 6/c and letting u = -u C/h

then by substitution and neglecting n 2 and higher powers:

Fx = RL pU 2 _n and Fy = 0

Therefore direct stiffness coefficient Kxx = Fx/6

- CKxx
Defining non-dimensional stiffness Kxx =

½ pu2RL
then Kxx = -27

= RL_ u2 p/C
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Cross Stiffness

Referring to figure 13 for a displacement _ in the positive x direction the friction
forces Fx and Fy are obtained by integrating the shear stress components round
the rotor surface.

2_ To Fy S 2_Fx = RL F. sine d_ : -RL TO cosO d9
J 0 0

Now T o = ½Pu 2 f where f = 0.079Re-0.25
flow

Reynolds Number Re = uc/v or uh/_ locally

assuming fully developed turbulent

Now this particular friction coefficient is appropriate for smooth pipes in well

developed turbulence. Friction relationships for rough sections of shaft in annular

clearances will obviously need to be determined experimentally.

As before by substitution and neglecting n2 and higher powers

Fx = 0 , Fy : -RLp_2 f_ n

Since Kyx = -Fy/6 then Kyx = RL p_2 _/C

- CKy x
Defining non-dimensional stiffness Kyx =

½ p_2RL

then Kyx = 2 _f

Following a similar analysis for a rotor displacement in the y direction the fluid
forces can be summarised as

[Fx][If]Ixl= pu2RL_
C

Fy -f 1 y

APPENDIX B

ADDITIONAL MATERIAL PRESENTED AT WORKSHOP

The effect of reverse flow on response was further investigated by conducting

run-down tests on the rotor. Figure 14 presents waterfall diagrams of a typical

run-down for the cases of no flow and reverse flow caused by a plenum pressure

of 41.4kN/m 2. It can be seen that a large reduction in the synchronous amplitude
is obtained as a result of the reverse flow. These waterfall diagrams also

show that no significant non-synchronous vibration components are present. The

magnitudes of the synchronous components are plotted on figure 15 for each

orthogonal direction.

The results generated by these run-down tests again illustrate that a damper
based on reverse flow may indeed be a feasible means of reducing synchronous
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vibration amplitudes. The use of such a device during run-up or run-down through
critical speeds is also clearly shown.

As a matter of interest, tests were conducted to investigate the effect of flow
in the same direction as rotation on the response. Figure 16 displays the effect
of a plenum pressure of 34.5kN/m 2 on the synchronous amplitude at a number of
steady rotor speeds. It can be seen that while the response is slightly
suppressed at the first peak, it is magnified at the second peak. There is
also a shift to a higher frequency of both peaks. Figures 17 and 18 show the
frequency response and synchronous amplitude during run-down. A small sub-
synchronous component of unknown origin can be seen in the response. The overall
effect of forward flow is obviously detrimental to the response of the rotor.
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Figure 9 Experimental set-up 
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NON-LINEAR PERFORMANCE OF A THREE-BEARING ROTOR

INCORPORATING A SQUEEZE-FILM DAMPER

R. Holmes and M. Dede

University of Southampton

Southampton, England

This paper is concerned with the non-linear vibration performance of a rigid

rotor supported on three bearings, one being surrounded by a squeeze-film damper.

This damper relies on the pressure built up in the squeeze film to help counter-

act external forces arising from unbalance and other effects. As a result a

vibration orbit of a certain magnitude results.

Such vibration orbits illustrate features found in other non-linear systems, in

particular sub-harmonic resonances and jump phenomena. Comparisons between theoreti-

cal predictions and experimental observations of these phenomena are made.

INTRODUCTION

The rotors of aero-engine gas turbines are often supported on three rolling-

element bearings, the intermediate bearing usually providing a thrust capacity. The

reason for this is that axial expansions take place from the thrust face and, being

proportional to distances along the shaft to the ends of the rotor, these expansions

do not impose such stringent demands on axial clearance at these ends as they would

if the thrust bearing were at one extreme end of the rotor.

However, many aero-engine rotors are stiff, (running well below any flexural

critical speed), and this means that problems of misalignment almost inevitably

exist. The presence of a squeeze-film damper around one of the bearings helps

considerably to alleviate these problems. However, since such dampers carry very

little radial load under these circumstances, non-linear response to unbalance and

sub-harmonic resonance with the casing flexibility are likely to occur.

Non-linear response manifests itself as persistence of synchronous vibration

well beyond the undamped natural frequency of the assembly with a sudden jump-down

to a lower vibration level at some higher speed. During engine run-down the lower

vibration level persists until a speed lower than the original jump-down speed is

reached, when a sudden jump-up will occur in the vibration amplitude. On occasion a

3ump-up with run-up has also been observed.

Sub-harmonic resonances occur due to the weak non-linearity offered by the

squeeze-film damper, usually at rotational speeds equal to some integer multiple of

the natural frequency of either of the bounce modes of the rigid rotor in its

casing. These resonances can be just as damaging in their own way as the resonances

which occur at speeds equal to these natural frequencies (that is when the integer

is unity).
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radial clearance of squeeze film

dynamic journal (or rotor) centre

equilibrium position of journal centre

centre of oil container (bearing)

eccentricity of journal in bearing

dynamic force transmitted to engine frame

stiffness of parallel spring per land

k/me 2

squeeze-film land length

journal mass per land

squeeze- film forces

rotating force vector per land

Pc/mC_2 = u/c

journal radius

t ransmiss ibi I ity

time

displacement of rotor centre of mass from geometric centre due to

addition of unbalance mass or loss of mass.

_R_3/mc3_

dynamic eccentricity ratio (= e/c)

oil viscosity

dynamic attitude angle

frequency of dynamic load

_R3/mc 2

journal angular velocity

functions of
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FEATURES OF THE PRESENT INVESTIGATION

To elucidate these problems, consider a stiff rotor in its flexible casinE

(FIE. la), in which the intermediate bearing is surrounded by a squeeze-film damper.

To formulate ideas let the stiffnesses of bearing pedestals 1 and 2 be hiEh compared

with that of bearing 3. Further, assume that bearinE 2 is held fairly centrally

within its squeeze-film damper, Under these circumstances the equivalent system can

be drawn as in FiE. ib, in which m, k and b are equivalent properties decided

by the dimensions of the original assembly. In particular, b will describe a

non- Iinear damper.

During runninE any vibration is likely to produce a concentric orbit and the

squeeze-film damper is not called upon to provide a static load-carryin E capacity.

Consequently, if the oil-supply pressure is of reasonable maEnitude, the damper

annulus remains full. The damper is often supplied with oil to a central circumfer-

ential oil Eroove which effectively separates the squeeze film axially into two

parts or lands. Governing parameters are usually assumed to be appropriate to one
land.

If the oil supply to the damper is sufflclent for the squeeze-film to remain

full and uncavitated a rotor vibration response curve such as (a) in FiE. 2 may be

expected [i], [2]. If however cavitation occurs, this has the effect of introducinE

a stiffness term in the radial restoring force provided by the squeeze film and

curves such as (b) are predicted [i]. The latter curve reveals a hardening-

stiffness non-linearity and a deleterious influence on rotor response. At moderate

frequencies three amplitude ratios are possible, the intermediate ratio being

unstable, resultinE in a jump-down with engine run-up and a jump-up with engine

run-down. Such jumps have been reported in practical systems, as has the occasional

jump-up with increase in engine speed. Fig. 2c shows the result of accelerating a

rotor up to a speed of 3500 rev/min, and back over a period of 8.3 minutes. The

degree of blackness depicts the strenEth of each harmonic from 1 x rotor speed to 3

x rotor speed, the other harmonics being practically non-existent. A predominant

feature is the disappearance of the 2 x and 3 x harmonics after the jump-down on

run-up and a reappearance of them after the jump-up on run-down. This suEgests that

the jumps form a demarcation between effectively linear and non-linear vibration and

have been noted in test enEines. Numerical investigations have also been carried

out to test the possibility of sub-harmonic resonance arisinE [i]. FiE. 3 shows

predicted sub-harmonic transients for a rotor-bearing assembly incorporating a

squeeze-film offerinE fairly light damping. Subharmonic vibration occurs at speeds

in the reEions of two, three and four times the lower bounce mode critical speed.

Such effects have also been reported in practical systems [3].

Very few experimental programs have been conducted to investigate problems of

non-linear jumps and subharmonic resonances in rotor-bearing assemblies. The experi-

ments of Nikolajsen et al [3] and Simandiri et al [&] are limited respectively to

flexible transmission shafts with squeeze-film isolators and to a highly idealised

test facility, showing little resemblance to an engine assembly.

RESPONSE CALCULATIONS

Fig. & shows in diaErammatic form the outer race of a rolling-element bearinE

within the oil container (the bearing pedestal), under the action of a restoring

force kce arising from the equivalent stiffness k of a parallel spring as in

FiE. lb. Vibration results from a dynamic force Pc due to some cause, such as

unbalance. The amplitude of orbital motion depends upon kce, Pc, PI and P2, the
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last two forces arising hydrodynamically from the squeeze-film. Any Eravity load on

the squeeze-film is assumed to be effectively neutralised by the parallel spring.

The equations governing the concentric motion of the shaft centre are then,

Pc cos (et-- _) --Pl - kce =--mcEe 2

and ... (i)

Pc sin (et-- _)- P2 = 0

where e is the dynamic eccentricity ratio resulting from unbalance. In equations

(i) the squeeze-film forces, PI and P2, can be shown from hydrodynamic (:onqidera-

tions, to be given, for concentric motion, by

and
PI = 0

P2 = cZ(l-- e Z)312
£e ... (2)

Equations (i) may be made non-dimensional by dividinE by mce 2 to Eive

and

Qc cos (et- _) =-e(l-- 1i[)

Qc sin (et-- k_) - _DR £ )3 E
me (c " (i-- EZ) 3f2

... (3)

where _ = k/me 2 = (e/en)-2, and Qc = Pc/race2.

If Pc arises due to mass unbalance mu, then Pc = mu_2 and Qc = u/c.

Putting _ -
MR( e/c )3

me
, equations (3) may be re-written to Eive

and

u
-- cos
c

(et-- _) = (K-- I)E

u

sin (et-- _) = %_c/(I-- E2) 312

... (_)

Hence, after some manipulation, we obtain

r °li ... (s)

where

A-_ ( )3

and

e n = _k/m

AssuminE a fairly typical value of A = 0.07 , say, a family of response curves
E

of _//C versus m/_n may be constructed for different values of u/c (Fig.5a).

From these curves an indication can be obtained of the amount of vibration c,

suffered by the rotor in the symmetric bounce mode, a common mode of vibration in

many rotating assemblies. Of equal importance is the dynamic force F transmitted to

the engine frame. Bearing in mind that Pl is zero, the force F is Eiven by

F = [P22 + (kc_)2] I/2 ... (6)
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and is best expressed as a ratio (the transmissibility) of the unbalance force Pc.

This transmissibility T is given by

T = F/P c = F/mc_2

u/c

From equations (2), (6) and (7) we obtain

[ n'2B2_:2 -- lTZ = (i-- eZ)_ + k 2_Z l(ulc)2

... (7)

NOW from equation (4),

_2_2¢2

(z- ¢2)a

and so finally

= (u/c)2- cz ['R- z] :z

)2 2
T 2 = 1 4- (_2"C [(--_-_-_n)2-- I]

AEain, assuming a value of A of 0.07, a family of curves showin E the dependence of T

on W/_n for different values of u/c is shown in Fig. 5b.

An inspection of Figs. 5a and 5b shows that both c/(u/c) and the transmissibi-

lity T depend upon u/c. This is expected since the system is essentially non-linear.

Also, only for _/_n above v2, is T less than unity. This speed ratio should thus be

made to correspond to the lower limit of normal operation of the engine, when it can

readily be seen from Figs 3a and 3b that a low value of u/c is desirable on three

counts low vibration amplitude, low transmissibility and low transmitted force.

Now suppose that the supply pressure is insufficient to maintain a positive

pressure in areas of the squeeze film where the boundary surfaces are instantane-

ously separating. For the sake of simplicity assume that as a result the squeeze

film becomes half cavitated. It may then be shown that P2 is halved and that PI is

no longer zero, being given by

2DR.13_ E 2

PI = c--6z--- (z - Ez )2
Hence, for circular concentric whirl, we have the following equations which

correspond to equations (4) for the uncavitated case

2_e 2
C COS (_t-- _) = (k - l)e + (i eZ) z

u n# e

sin(_t-- _) = -_ (i-- ez) 312

... (e)

1

in which _ = A(k)_/_.

u )2 = _92 n'262 4"E4
Hence (_ [ 4(1-- _Z)3 + (i-- E2)4

+
4E3

1)

] + eZ(k-- i)2

... (9)

In this case

T 2 -
e 2

( u/c )z

1'12
[,_2(

4(1-- e2)3 + (i-- e2)4 ) + KZ -I-(1-- E2)2 ]
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Using equation (9) this may be rewritten as

)z C(I_E )zT2 = I + (u--2_ Z

-2

in which K = k/m_2 -- (_n)

+ 2R -- l]

'iRe effect of cavitation is shown in Figs. 5c, d, which reveal a deleterious

influence on vibration and on transmissibility. The distortions in the response

curves of FiE. 5c compared with what one would expect from a linear system are

responsible for the so-called jump phenomenon. At high frequencies three amplitude

ratios are possible, the intermediate one being unstable.

STABILITY CONSIDERATIONS

In most applications of a journal bearing we are concerned with the stability

of a static equilibrium position e.E. [6]. In the present work it is necessary to

consider the stability of a circular concentric equilibrium orbit. The two cases can

be compared as shown in Fig. 6a, b. It may be shown [6] that for perturbations from

a static equilibrium position the hydrodynamic forces P_ and P/ of a journal bearinE

oil film are given by

P1,2 = A_j(I-- 2&/_j)fl,2(z, i-- 2a/_j )

With little loss of accuracy [7] we may write them as

I
P1 = £FI(C) ± ( _J -- &) hl(e)

2

P2 = EF2(_) ± ( 0_j ._ &) h2 (E)
2

in which the positive siEn relates to the squeeze damper and its force directions

(Fig. 6b) and the neEative siEn to the journal bearing and its force directions

(FIE. 6a). Now in the case of the squeeze damper, if the journal centre is moving

on a circular concentric orbit at angular velocity &s, then _j = 0 and _ = _ + _s.

Hence we finally have for the journal bearing

#
Pl = _FI(_)-- ( _J "--&) hl(e)

2

P2 = EF2(_)"- ( __i_ &) h2(_)
2

while for the squeeze-film damper
#

P1 = _FI(_)- (&s + _) hi(e)

!

P2 = EF2(E)- (&s + _)h2(E)

NOW for a journal bearing, for & << _j and neElectinE second order terms

' _i ahl dE + hld& + _-l h2d_dP r = dP 1 -- P_d_ = Fld_ 2 8e 2

and
' _t

dP s = dP 2 + P_d_ = F2d_ 2 @h2 _ hl da
@-_ de + h2d& 2
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while for a squeeze dampert for &s _

t
_--h_dc - hld_ s _h2 dasdPr = dP$ + P2das = F1d_ -- _

.ah2
dP s =--dP_ + P{ das =--F2d_ + _ de + h2 d_s _hl das

... (1o)

Now r, s correspond to the _ and _ directions, respectively. Thus for the squeeze

damper the direct damping terms are equal and of the same sign as for the journal

bearing_ the cross damping terms are equal but of opposite sign_ the direct

stiffness terms are twice the values and of the same sign, and the cross stiffness

terms are twice the values and of opposite sign.

The effect of adding an extra radial force kcc due to the retainer spring is to

increase dP r and dP s respectively in equations (lO) by kcd_ and kc cd_ s. This in

turn has the effect of adding the stiffness k to each of the direct stiffness

terms in equations (i0). Applying these new equations to perturbations of a rotor

from a concentric circular orbit indicates that part of the response curve is indeed

unstable.

SUBHARMONICRESONANCE

Figure 3 shows subharmonic transients, which could persist if some negative damping

were present to counteract the positive damping from the squeeze film damper. Such

negative damping could emanate from any journal bearings present [3] or from inter-

nal shaft friction, say.

TEST RESULTS

TO create a realistic engine configuration, a two-bearing test facility used in

a previous research programme [5] has been adapted to form a three-bearing rigid

rotor incorporating the essential features of a medium-sized aero-engine assembly.lt

is not uncommon in gas turbine rotor vibration for an antisymmetric rigid-rotor mode

to exhibit a node near one of the rolling-element bearings. With such an

application in mind, the test rig shown in Fig. 7 was used for the investigation of

the squeeze-film damper, i, at one of its three rolling-elements, 2. The self-

aligning bearing, 3, constituted a pivot about which an antisymmetric (i.e. conical)

mode of vibration would occur, when the rotor, 4, was acted upon by a force arising

from rotation of the unbalance mass, 5. Flexible bars, 6, simulated the pedestal

flexibility of an actual engine. The flexible bars were screwed into a heavy

foundation block, 8, which represented ground. The squeeze-film dimensions sere set

by the outer diameter of the rolling bearing (136 mm), and damper land (9 mm) and

its radial clearance (0.216 mm). Oil of 6 cp viscosity was supplied to the damper

via three supply holes, 9, and a central circumferential groove. End plates were

attached at the ends of the outer element of the damper to afford some sealing.

Proximity vibration pick-ups were used to measure the vibration of the shaft

relative to the pedestal and relative to ground, and strain gauges were provided on

the flexible bars from which transmitted forces were recorded.

Tests indicated the existence of jump phenomena during run-up and run-down,

when the squeeze-film damper ran at low supply pressure (Fig. 8a), but no such jumps

when it can with a higher supply pressure (Fig. 8b). These results agree with the

trends predicted by Figs. 2b and 2a and by Fig 5c, d.
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Figs. 9a, b show further comparisons, this time between the predicted and the

measured horizontal components of force transmitted to ground, as measured by strain

gauges fixed to the flexible bars 6 of the rig (Fig. 7). The same trends can be

seen in both, the one exception being the continuous fairly steep rise in trans-

mitted force with speed for the largest unbalance (1.9 gr-m) in Fig 9b. Fig.lOa

shows a predicted waterfall diagram which illustrates vibration occurring at

engine-orders half, one and two. These engine orders are encouraged by such factors

as transients or slight eccentricity from the centre of the squeeze-film damper. The

rig's natural frequency component at 33Hz is however present at all rotor speeds,

and, in particular, is excited by the half-order when the rotor speed is 66 rev/min.

The jump-down in the lEO is clearly discernible and coincides with the disappearance

of the 2EO. As such it agrees with the experimental observations illustrated in

Fig. 2c.

Finally, Fig. lOb shows an experimental waterfall diagram, for comparison with

Fig.lOa. Common features can be clearly seen, such as the strong first engine

order, the _EO exciting the natural frequency of 33 Hz at a rotor speed of 66 Hz and

the 2EO, with its disappearance after the jump in the lEO. Owing to the scale

adopted to bring out the _EO and 2EO, the lEO was everywhere extremely large, but

the jump certainly occurred at about 48 Hz as can be verified from Fig. 9b. The

response at 84 Hz illustrates another natural frequency of the experimental rig

which was not catered for in the theoretical model

_NC_SI_S

This paper has considered the case of a flexibly supported three-bearing rigid rotor

utilising a squeeze-film damper at one of its bearings. It has shown that the

assembly can be regarded for analysis as a parallel combination of spring and

non-linear damper supporting the rotor mass. As a result, subharmonic resonances

and jump phenomena are pre.d%cted.

A test facility has been described, which displays such phenomena and these have

been presented in the form of response curves and a waterfall diagram. The fre-

quency content in these shows close resemblance to theoretical predictions presented

in the same form.

Finally, a relationship has been established between the linear stiffness and

damping coefficients of a rotating-journal bearing for perturbation from an equilib-

rium position and the corresponding coefficients of a non-rotating squeeze-film

damper for perturbation from an equilibrium orbit.
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357



0

2

jump up

_ unstable

rotor speed

(a) Uncavitated rotor vibration response curve.

(b) Cavitated rotor vibration response curve.

(c) Frequency diagram.

Figure 2. - Response curves and frequency diagram.
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(a) Full-film frequency response.
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(b) Full-film transmissibility.
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(d) Half-film transmissibility.

FiEure 5. - Response curves.
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(a) Journal bearing; r and s are

stationary coordinates.

(b) Squeeze-film damper; r and s are

rotating coordinates.

Figure 6. - Comparison of journal bearing

with squeeze-film damper.
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Figure 9. - Horizontal components of force transmitted to _round.
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I. INTRODUCTION

Squeeze-film elements are widely used for vibration control and force

isolation. The dynamic characteristics of these components are of great importance

in the design and analysis of rotor-bearlng systems.

It is generally assumed that Reynolds equation can be used to provide an

adequate model for a bearing oil-film. Various simplifying assumptions are used,

e.g. the short bearing approximation, to enable the equation to be solved and thus

yield an expression for the pressure distribution in the oil-film (I). The oil-

film force is obtained by integrating the pressure distribution circumferentially

and along the axis of the bearing, and this gives both positive and negative

pressure regions. It is frequently assumed for simplicity that negative pressures

cannot be sustained in a cavitated oil-film, hence the oil-film force is obtained by

performing the integration only in the positive pressure region. It follows that

the limits of integration are of great importance (2,3).

It is often assumed that squeeze-film bearing coefficients can be deduced from

those obtained from a journal bearing simply by suppressing the angular rotation.
This leads to the conclusion that the stiffness coefficients are zero whereas in

practice a squeeze-film bearing can support a dynamic load without the use of

centering springs. The limitation of this assumption was noted by Holmes (3) in

relation to the velocity coefficients. He suggested that the only case in which

the damping coefficients for a squeeze-film bearing and a journal bearing would be

equal is a full film of oil because the limits of integration for both bearing films

are then identical. This limitation has been frequently overlooked. Thus in

general the linearized coefficients used to model a squeeze-film bearing cannot be

deduced from journal bearing coefficients. The problem determining squeeze-film

coefficients has been tackled by various authors using several different approaches

e.g. (4,5).

In this paper the squeeze-film force equations, with the correct integration

limits, are used to show that the classical linearization process cannot be adopted

to derive oil-film coefficients for a squeeze-film bearing. This leads to a

discussion of the physical meaning and usefulness of linearized models to represent

squeeze-film bearings.
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I .2 Nomenclature

c ... etc.

ce¢

d

e

F ,Fe ¢ ,Fej ,Fcj

gl 'glj .... etc.

h

1

oil-film damping coefficients

radial clearance

mass unbalance eccentricity of the shaft

shaft displacement from bearing centre line

oil_film forces in n , n directions for squeeze-film

bearing and journal _ear_ng respectively

particular integral solutions for squeeze-film bearing and

journal bearing respectively
oil-film thickness

bearing length

ne ,n_
P
R

V

Z

Z

g

g

_o

_o
el,e 2
q_
rl

al

II
(')
( )T transpose

direction vectors defined in Fig. I

oil-film pressure in the clearance

bearing radius

velocity vector in Fig. I

axis along the bearing length

state vector

eccentricity ratio e/c

static value of

attitude angle

static value of ¢
oil-film limits

angle defined in Fig. I

small change in E

small change in

angular velocity of journal

fluid viscosity

differential with respect to time

2. OIL FILM FORCES

The pressure distribution p in a short bearing of length 1 is given by

Reynolds' equation as

(h3 3_P) = 12 _

3z _z c3
(e cos e + e ($ - _/2) sin e) (I)

where z is the distance along the longitudinal bearing axis, c is the clearance and

is the oil viscosity. Variables e, ¢ and e are defined in Fig. I, and _ is the

angular velocity of the journal (zero for a squeeze-film bearing). Integration of

equation (I) twice with respect to z and insertion of the boundary conditions p = 0,

z = ±1/2 gives the pressure distribution

p (e) = ---
c3h 3

(e cos B + e ($ - m/2) sin e) (2)

Thus the oil-film forces along the orthogonal axes, defined in Fig. I are
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e2

F e - R1 I p cos e de

el (3)

2
F¢ - R1 p sin e de

eI

For an uncavltated film the limits are 0 to 27. For a ruptured film the

force is computed by using only the positive region and assuming zero pressure

elsewhere. A positive pressure occurs in the arc eI to e I + _ defined from
equation (I) by

cos e + e (¢ - m/2) sin 8 < 0

That is tan el--- (4)
e(q_ - _/2)

Equation (4) is central in explaining the different characteristics of journal and

squeeze-film bearings.

2.1 Journal Bearing

For small changes in the attitude angle ¢, as occurs in a journal bearing ¢ <<

_/2.,

tan e. _ 2_/e_ (5)
1

Since _ is positive e. is always positive, thus the positive pressure arc
I =oscillates with a small amplitude around e. 0. Hence the limits of integration

can be taken as 0 and _ and the oil-film forces are

wR13

Fej= c2 (_ glj ($ - m/2) + _ g2j)

wR13

FCj= 2
c

(E g3j ($ - m/2) + _ glj)

(6)

where glj

g2j

g3j

=- 2 e (I - _) -2

_ (I ÷ 2 e2)(I _ c2) -5/2
2

_E2) -3/2
= _ (1

If _ is set to zero in equation (5) then eI = 7/2 whereas in practice it is known
that in a squeeze film the positive pressure region rotates around the bearing.

2.2. Squeeze-film Bearing

For a ruptured squeeze_film, equation (4) becomes

tan eI _ -e/e$ (7)
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Angle ¢ can be positive or negative depending upon the position of the journal

in the clearance circle (see Fig. I), thus 81 is finite, and can take positive or

negative values. It was at this stage in hfs analysis that White (2) incorrectly

set 81 ; 0 for small values of e. This is equivalent to suppressing angular
motion o the journal, that is to derive the squeeze-film bearing coefficients from

those for a journal bearing by setting _ to zero.

If equation (7) is used, to define the limits of the positive pressure arc,

then as the journal describes an orbit in the clearance circle the cavitation region

rotates. This region is determined by the squeeze velocity and makes a complete

rotation for each rotation of the journal. The maximum pressure occurs in the

direction of the velocity vector V shown in Fig. I. Thus the oil-film behaves in a

totally different manner to that in a journal bearing where there are only small

oscillations of the cavitation region.

With the correct variable limits inserted the oil_film forces for a _ squeeze-

film bearing become (6)

uR13
F -
e 2

C

($ g1+ g2)

uRI 3

C

(8)

= 2 2 _2
where gl - 2_ cos3B I (I - E cos e I

g2 E sin eI [3 + (2-- 5 2) cos2e c2)-2 2 2 )-2= i] (I - (I _ _ cos eI

+ m (1 + 2 2) (1 -" 2 ?5/2

tan B
I

= _

g3 = _ sin 81[I - 2 co 2 81+ e2cos 2

+ _ (I -2) -3/2

+ tan-lie sin e (I - 2)-_]
I

eI -I(I - 2)-I
2 28 _2

(1 - _ cos 1

since 8_ { O, gij { gl etc. and the squeeze-film forces Fe,

from Fej] and FCj.

F cannot be derived

It can be seen from equations (6) and (8) that the oil_film forces are non_

linear functions of the states (_, &, ¢, ¢)

3. LINEARITY

There are many analytical benefits to be gained if linear models can be derived

which adequately represent these non-linear forces. If we define a state vector as

_, one possibilSty is to seek to linearize the system about the equilibrium position

Z defined by Z__ = (s o, O, ¢o' 0). We then assume small perturbations q,_ about Z o,--0
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that is

(co + , , ÷ ' (9)

The procedure defined in equation (9) is used in most of the literature which

is concerned with deriving llnearized oil-film coefficients. When this approach is

applied to a _-film Journal bearing it yields expressions for four stiffness and

four damping coefficients (7). As noted earlier some workers have incorrectly

suggested that by setting m- 0 in these expressions the resulting stiffness and

damping coefficients are obtained for a squeeze,film bearing. To llnearlze about

Z for a squeeze'film we must use equation (8) Consider one coefficient-o

aF
e

e¢ a¢
Z
-o

aF
e

Z
-o

c a¢ a¢

Z
-o

ag I

z
-o

[6 E cos 2 O I sin e I (I - c2cos 2 oI)

i

2 28 2 2 a eI I+ 8 e cos 3 eI (I - E cos I)(E cos eIsin eI )]

a¢ I,z
- o

An expression can be derived for ag2/a$, but this tedious operation need

-I

not be performed. Now eI --tan -_T-' but at the equilibrium point

thus c cannot be evaluated. Hence the classical approach toeI is undefined, e
obtaining linearized oil-_im coefficients cannot be applied to a cavitated squeeze-

film bearing. The question arises: do linear oil-film coefficients have any

meaning for a cavitated squeeze-film bearing? To answer the question it is

necessary to appreciate the physics of the situation.

The linearization described above is performed about a point which is usually

defined as the centre of the orbit. In practice state Z is not achieved, that is
-o

there is no point on the orbit that both velocities are slmultaneously zero. Thus

we must reject the concept of linearized coefficients for a ruptured squeeze-film

bearing, or adopt an alternative approach to obtaining equivalent linearized

coefficients (4,5) or seek a new analytical approach to the problem.

4. FURTHER CONSIDERATIONS

Consider a perturbation _ in E with _ - O.
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If _ is positive the shaft moves against the thin part of the oil-film and a

large negative radial force is produced. If _ is negative the shaft squeezes a

thicker film and the magnitude of the radial force is lower, as shown in Fig. 2.

The force is linear in velocity and the slope depends upon E . However the force

also depends upon the sign of _ (or _) and o

F (_) _ _ F (-_)
e e

This essentially non'linear behaviour is not reproduced by setting

the journal bearing expressions as shown in Fig. 2.

_ = 0 in

Now consider perturbations in with c = O. If is positive a radial force

is produced which seeks to centralise the journal. The magnitude of the force

depends upon _ and e . As shown in Fig. 3 if _ is negative the same centralising

force is produced, th°t is

e e

Once again this highly non-linear behaviour disappears when we compute the

bearing forces from the journal bearing expressions with _ = 0 (Fig. 3).

Figures 2 and 3 demonstrate why the classical approach to linearization breaks

down, namely that the principle of superposition is violated.

CONCLUSIONS

Earlier work by the authors (5) has shown that oil-film forces can be modelled

by linear coefficients. In that work they used identification techniques to

generate numerical values for these coefficients. This paper has shown the

invalidity of applying the perturbation techniques normally used in bearing studies

to derive expressions for linearized coefficients to represent a cavitated oil-film.

Hahn (14) has developed an alternative approach based upon energy techniques to

obtain estimates for linearized coefficients. Some current work being undertaken

by the authors suggests that an alternative analytical approach is possible.

These results will be reported in due course.

REFERENCES

I) Mohan, S., Hahn, E.J. "Design of Squeeze Film Damper Supports for Rigid

Rotors", ASME, Journal of Eng. for Industry, Vol. 96, 1974, p976.

2) White, D.C. "The Dynamics of a Rigid Rotor Supported on Squeeze Film

Bearings", Conference on Vibrations in Rotating Systems, London, Feb. 14-15,

1972, p213.

3) Holmes, R. "Vibration and its Control in Rotating Systems". IUTAM Symposium

on Dynamics of Rotors, Lyngby, Denmark, August 12"16, 1974, p.156.

4) Hahn, E.J. "Equivalent Stiffness and Damping Coefficients for Squeeze Film

Dampers", I. Mech.E. Conf., Vibrations in Rotating Machinery, York 1984, Paper

C325/84, p507.

370



_)

T)

Burrows, C.R, Sahlnkaya, M.N. and Kucuk, N.C. "Modelling of Oil-Film Forces

in Squeeze-Film Bearings". ASME/ASLE 1985 Trlbology Conference, October 8-I0,

1985, Paper 85-Trlb. 19. To be published in Journal of Lubrication
Technology.

Caprlz, Q. "Sulle Vibrazlonl Delle Aste Roberti", Ann. Scuola Normale

Superlore, Vol. 17, 1963, p31.

Holmes, R. "The Vibration of a Rigid Shaft on Short Sleeve Bearings", Journal

of Mech. Eng. Science, Vol. 2, 1960, P337.

Y

q x

Line
C

@

Cb- Centre of the bearing

C1. - Centre of the journal

Fig. I Bearing coordinate axes

371



\

\

\
\

\

F_

\

\

\
\

"6oo -

600

400

200

--- Joumal Bearing

-- Squeeze-Firm Bearing

3

"_ 3o_o 6oo6

_,oo
- 400

- 6OO

Fig. 2 Oil-film force in n direction plotted against
e

!

-0.2
!

-0.I

2000

--- Jourr_l Bearing

-- Squeeze-FiLm Beoring

_. o._' o._ 0.3'

-2000

Fig. 3 Oil-film force in n
e

372

direction plotted against

C-_



N87-22219

EXPERIMENTAL MEASUREMENT OF THE DYNAMIC PRESSURE DISTRIBUTION IN A

SQUEEZE FILM BEARING DAMPER EXECUTING CIRCULAR CENTERED ORBITS

L.A. San Andres and J.M. Vance

Texas A&M University
College Station, Texas 77843

A review of previous experimental measurements of squeeze film damper
(SFD) forces is given. Measurements by the authors of SFD pressure fields and
force coefficients, for circular centered orbits with ¢ = 0.5, are described

and compared with computer predictions. For Reynolds numbers over the range
2-6, the effect of fluid inertia on the pressure fields and forces is found to

be significant.

Introduction

Squeeze Film Dampers (SFD) have been the subject of numerous experimental

investigations since their development in the early 1960's to attenuate
turborotor vibration in aircraft engines. A number of investigators have

compared measured pressure fields and/or transmitted forces with predictions

based on approximate or limiting geometry solutions to the Reynolds equation

for incompressible inertialess flows. Correlation between test and experiments
has ranged from good to excellent in some cases to poor in other instances.

Among the most important considerations that have been shown to be of

considerable influence on the measured pressure profiles and forces are: oil

feed mechanisms, use of end seals to prevent axial leakage, level of inlet

pressure supply and cavitation pressure of the lubricant, coupling of the

damping device to the rotordynamics of the system and, in some circumstances,

fluid inertia effects. The review of past experimental work on SFDs treats

only the reported investigations for circular centered orbits (CCO). Other

types of investigations, although important but less relevant to the subject of

the present study, are mainly oriented to determine the overall behavior of

rotor systems supported in SFD's.

Thomsen and Anderson [1] studied the range of damping available from the

squeeze film by varying the radial clearance and oil viscosity in a test rig.

For a centralized preloaded SFD, the damping coefficient was obtained by

measuring the deflection in the radial supports of the bearing housing.

Comparison with a linearized theory, valid for small amplitude CCO, showed good
agreement and independence of the damping coefficient from rotor speed and

amplitude of vibration. A significant contribution (although no measured data
is presented) is the statement that the measured radial stiffness is much lower

than the measured static stiffness, showing the substantial effect of the added
mass effect on the oil film forces.
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Vance and Kirton [2] carried out an experimental study of the hydrodynamic

force response of a damper with end seals. A controlled orbit test rig,

independent of the interactions with the rotor bearing systems, was developed.
The pressure field was measured around a journal performing circular centered

orbits, and then integrated to determine the force components of the squeeze

film. Comparisons show fair agreement with the long bearing theory.

Paradoxl cally, Iarger-than-predi cted dimensionless pressures and forces were

measured for a light viscocity oil and smaller-than-predicted pressures and

forces were measured with high viscosity oil. An attempt to explain the first

case was made by suggesting that the damper coul d be operating in the Taylor

Vortex regime. However, the Taylor Vortex regime arises in rotational Couette

type flows, and is considered to be a natural convection process resulting from

centrifugal forces. The phenomenon would not be expected at all in a SFD. The

discrepancy from Reynolds (long bearing) Theory should be attributed to other

phenomena, such as oil inlet conditions, which may have caused distortion in

the pressure field, or it is possible that the large radial clearance used

could have induced significant fluid inertia effects.

Tonnesen [3] obtained damping coefficients by measuring the force

impedance of the squeeze film in a test rig for small amplitude centered
motions. The measured force coefficients were constant over a considerable

speed range provided the transmitted force was below a certain level. As the

oil supply was increased, agreement with the full film short SFD theory was

found excellent for low frequency motions. With zero supply pressure, the

damping capacity of the SFD disappeared and large forces were transmitted to

the supports. For offset motions, the correlation was generally poor and

misguiding.

Feder, Bansal, and Blanco [4] made an experimental study of a damper with

a low L/D ratio (0.3), end seals with negligible leakage, and with oil supplied

through small holes in an annular groove at the ends of the damper. A smaller
clearance ratio than in reference [2] was used, In this way, the effects of

fluid inertia and the lubricant inlet on the squeeze film pressure distribution

were minimized. Excellent agreement of measured values with the long bearing

theory was reported. Measured pressure profiles and forces were found strongly

dependent on the inlet and lubricant cavitation pressures.

Miyachi et. al. [5] conducted measurements of the viscous damping

coefficient for a damper with L/D=O.2 and several types of inlet and outlet

conditions. The results were compared with numerical predictions from a FEM

code. Using simple end plate seals and small inlet holes, as well as a central

groove, the measured damping coefficients were much higher than predicted, even

in the case of an open ended SFD. For small amplitude motions, and using

O-ring and piston ring seals at the ends of the SFD, the measured damping

values were consistently higher than predicted, perhaps due to the inherent

damping capacity of the end seals. Certainly the end conditions, at the

boundaries of the damper are more complicated than the models incorporated in
current theories.

Fluid Inertia Studies

The effect of fluid inertia on squeeze film forces has been largely

overlooked by rotordynamicists and lubrication engineers, even though
theoretical analyses which account for fluid inertia at moderate Reynolds
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numbers have predicted 1arge dt screpanctes from classical 1ubrtcatton theory.
These analyses have raised controversial issues that must be resol ved by
experimental evl dence.

To date, several different measurements of fluid inertial forces in

squeeze film configurations have been reported in the literature, but these

investigations have mainly been concerned wlth small amplitude motions of
journal about the centered position.

Fritz [6] performed analyses and tests to investigate the added mass and

damping forces of a fluid in a thin annulus surrounding a rotor vibrating due

to unbalanced forces. Comparison of test and theory gave measured added mass

values 25% lower than predicted. The discrepancy was attributed to the axial

leakage through the end seals of the test rig. Results also showed the extreme

importance of the fluid forces in determining the critical speeds of the rotor.

Chen et. al. [7], and Yang [8] measured the added mass and damping forces
for vibrating rods in confined viscous fluids. Results from the damped free

oscillations of the rod were compared with numerically predicted results.

Correlation of experiment with theory is excellent although the clearance

ratios tested were higher than those usually found in lubrication applications.

Mulcahy [9] derived finite length corrections for the fluid forces acting
on a central rigid rotor translating periodically in a finite length annular

region of confined fluid. Predictions for the added mass are quite

satisfactory and within 2.3% of the measured data. Damping showed a variation

of 10%, a deviation considered acceptable given the usual scatter encountered

in measuring damping values.

There have been some recent efforts dlrected toward the experimental
determination of fluid inertia forces for large amplitude CCOs. In this case

the analytical problem becomes more complicated since the full nonlinear

Navler-Stokes equations are to be considered. If cavitation is present, a

clear isolation of damping and fluid inertia forces is no longer possible.

Since damping forces increase rapidly with the orbit radius and are likely to

dominate added mass forces, at least for the Reynolds numbers currently found

in practice, experimental measurements of fluid inertia forces is more

difficult in these operating regions. Tecza et. al. [lO] reported

experimental results which strongly support the existence of large inertia

forces, although inferences must be drawn from the dynamic behavior of the

rotor system rather than a direct measurement of damper forces.

Tichy [11] presented measured results which show a substantial effect of

fluid inertia in the damping force at quite moderate Reynolds numbers. A

tightly sealed damper with an L/D ratio of .15 was used in the experimental

work. The journal was constrained to describe CCOs of about 20% and 50% of the

radial clearance. Cavitation of the fluid was not allowed. For small Reynolds
numbers (<1), the measured film forces were 30% lower than the values from the

inertialess solution of the infinitely long bearing theory. These results are

opposite to those of Feder [5] referred above. Tichy argues that end leakage is
playing an important role in damper behavior.

In Tichy's experiments with Reynolds numbers over the range 2-9, the

measured fluid film forces were substantially higher than the values predicted
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by the theories which account for fluid inertia effects in the flow. These

measured results would be in the right direction if the phase shift between the

purely viscous damping and added mass forces increased as the inertial

parameter Re increased. However, virtually no change is detected in the phase

angle. This striking result means that the total fluid force is always

opposite to the journal motion. The added mass effect would thus be almost
nul I.

This paper reports experimental pressure measurements made by the authors to
determine the influence of fluid inertia in squeeze film dampers. The test rig

employed is a modification of the one used by Vance and Kirton [2]. The

modifications were made to improve the accuracy of the measurements and to

understand better the test results. The basic concept of the test apparatus is

to provide a journal with a known constrained motion within an annular

clearance filled with oil, so the characteristics of the squeeze film can be

studied independently of the dynamics of the rotor system.

Test Apparatus and Instrumentation

A schematic view of the SFD Test rig is shown in Figure i. The relevant

parameters and basic geometric characteristics of the test rig are given in

Appendix 1. The relatively large radial clearance of the squeeze film in the

test apparatus is designed to produce significant fluid inertia effects on the

film forces at low whirling frequencies.

The journal is mounted on the eccentric lobe of a stiff shaft running on ball

bearings with solid steel supports. The shaft is driven through a flexible

coupling by an electric motor at a fixed rotational speed of 1770 rpm.

The outer damper bearing housing is supported by bearing index plates using
locational fits in order to allow it to rotate through 360 degrees. The

journal is prevented from rotation by 4 axial pins, equally spaced, which enter

from the end of the journal into a loose fit in the bearing index plates. The

ends of the journal are sealed against these plates using O-rings. The axial

flow, or amount of leakage, passing the seals is practically zero (none was
ever observed).

Oil is supplied to the SFD through a circumferential groove located in the
central plane of the bearing housing. The lubricant supply can be varied

by using pressurized air and a pressure regulator connected to the supply tank.

For the experimental tests reported here, the inlet supply pressure was

adjusted to 830 KPa (120 psig) so as to maintain a positive pressure throughout

the squeeze film. Cavitation was thereby prevented and a full 360 degree film

was developed as shown by the measured pressure waves.

Measurement of the dynamic pressure distribution in the oil film was chosen

here over a direct measure of the transmitted forces since the former provides
a more direct check of the SFD theories and does not introduce external

effects, such as inertia of the housing or forces generated by the end seals.

In the axial direction, 3 holes equally spaced 11.11mm(7/16 in) were machined

on one side of the central groove. The pressure transducers installed in these
holes are designated from end to middle as PT1 to PT3 and correspond,

respectively, to the axial distances Z1 to Z3 measured from the closest edge of

the groove.
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In order to detect if significant changes in the pressure field can be
observed at the same axial location but different circumferential position,
three holes separated by 120 ° were tapped at axtal location Z2. The measured
differences were negligible in preliminary tests with CCO. Thus, as theory
indicates, the pressure field around the Journal is the same as the dynamic
pressure measured at a fixed point for a complete revolution of the shaft and
only one pressure transducer is necessary to make the measurement.

Two proximity probes, gO degrees apart and installed midway between the
ends of the bearing, are used to measure the journal center motion and

accurately determine the orbit shape and radius. In all the tests performed,

it was determined that the orbital motion was circular and centered (CCO)

within small tolerances (see Appendix 2).

The pressure transducers are of quartz type and the gap probes are of the
eddy-current type. The characteristics of these transducers are given in
Appendix 2.

The fluid temperature is measured at the axial location Z2 with a type T

thermocouple which is in contact with the lubricant. Oil viscosity is
determined from prior measured viscometer data for a range of temperatures, and

algebraic expressions are obtained for the fluid viscosity in terms of its

temperature using ASTM D-341 formulae.

Two different kinds of oils have been used to date in the experimental
procedures: SAE 30 oil (ISO 100) and a silicone fluid (ISO 32). The viscosity

versus temperature formula obtained are given in Appendix 2.

Figure 2 shows the instrumentation arrangement. The output voltage of the
proximity probe (PP) and the pressure transducers (PT) pass through a signal

conditioner calibrated to give a voltage output in the range between +-5 volts.

After this operation, the dynamic signals go to an 8 bit analog/digital
converter to finally be processed in a desktop computer. At the same time, the

oil temperature is read, and the orbit shape and the voltage signal from one of

the pressure transducers are displayed and stored in oscilloscopes.

With CCOs and provided the effect of inlet/outlet mechanisms is minimal,

the film pressure wave is synchronous with rotor speed and fixed relative to

the rotating shaft. Therefore, the measured pressure vs. time waveform

could be transformed to a pressure vs. angle relationship. Thus, at the axial

location of measurement Zi, experimental fluid film radial and tangential

forces and force coefficients are determined by numerical integration of the

measured pressure profile for one rotor revolution. Appendix 3 contains the

parameters employed to define the dimensionless pressure, p, and film forces
and force coefficients at the axial location Zi of measurement.

In the experimental procedure, typically 60 pressure data points were
taken for a rotor revolution at the location of measurement, and which

corresponds to a data point for every 60 of rotor rotation. This number is

considered to describe with detail the film pressure wave and provide
calculated film forces with exactitude.
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Results and Discussion

Parallel to this experimental investigation, a finite element code was
developed to calculate the pressure field, film forces and dynamic force

coefficients for finite length SFDs describing circular centered orbits [12].

The analysis, strictly valid for small Reynolds numbers, includes the effect of

fluid inertia. Both temporal and convection terms are retained in

the nonlinear flow equations which are solved iteratively. Different kinds of

inlet and end boundary conditions such as local or global type end seals are
incl uded.

The SFD test rig has a length to diameter ratio, L/D, equal to 0.84, a

central groove and O-rings at the journal end. Due to these characteristics,

neither the long SFD nor short SFD models can be used for comparison with the

experimental results.

The following observations, which are relevant to understand the nature of
the measured results, were made along the experimentation:

a) Pressure field variations at the same axial location but different

circumferential positions were found to be insignificant. This result is a

direct consequence of the smallness of the inlet orfice which allowed the

pressure waves to be independent of the circumferential location.

b) No oil leakage occured at the damper ends due to the effective sealing
action of the O-rings: hence, any through or global axial flow was prevented.

Therefore, as measurements confirmed, the region of largest pressures was

closer to the damper end walls (at Z1) and decreased as the central groove

location was approached.

c) It is a well known practice to assume the pressure is uniform and equal to

the supply pressure in a grooved region. However, throughout the

experimentation it was found the pressure at the central groove differed

considerably from the simple assumption used in practice. Furthermore, the

measured pressure gradient in the squeeze film lands was much less than the

linear relation expected for a SFD model with uniform pressure at the groove.

By simple geometric similarity and assuming no axial flow and curvature

effects, the ratio of pressures in the groove to those in the film lands should

be approximately equal to 1/25. However, the observed pressure values at the

groove were considerably larger and approximately equal to 1/3 of the film

pressure at axial location ZI. These unexpected results can be attributed to

the effect of fluid inertia, since at the groove region the Reynolds number is

25 times larger than in the film lands. A Bernoulli type effect and steep

pressure gradients are inferred to occur at the interface between the groove

and the squeeze film lands.

Thus, the condition of uniform pressure at the inlet of the squeeze film

lands was thought to be too simple to be used in the theoretical treatment.

The groove acts as a second squeeze film damper and its interface with the

squeeze film lands should be provided in terms of flow continuity rather than

in pressures due to the Bernoulli type effect most likely to occur in this

region. Hence, the groove-squeeze film interface was modelled assuming a local

flow constraint was present at the groove edges [13]. This boundary condition
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relates the local balance of the axial flow with the pressure drop across the
film discontinuity through an End coefficient, _, which ts a parameter in the
flow solution. A value of en_efftctent, _-0, represents a uniform axial
film geometry; while as _ approaches -, a uniform pressure at the groove ts
obtained,

This type of ad-hoc procedure has also been used in the experimental work

reported In [i0]. In it, a damper with inlet and drain grooves was modelled as

if it was locally sealed so as to obtain closer agreement between measured and
predicted forces.

m

From a parametric study performed, values of the end coefficient, CL, in

the range from 0.2 to 0.3 were found to _redict film pressures which closely
matched those at 21. Then, a value of CL=0.25 was subsequently selected to

predict film forces and compare with the experimental results at axial
locations Zl and 22.

At this point, a brief explanation of the effect of fluid inertia on the

film pressures for the full film solution is thought to be necessary.

Consider, as in Figure 3a, a journal contrained to perform circular centered
orbits of dimensionless radius e/c and frequency u. If fluid inertia is

neglected in the analysis, Figure 3b shows the predicted dynamic pressure wave

p observed at circumferential position A and Z2 as the journal center describes

a complete orbit. The purely viscous dynamic pressure is in phase with the

film thickness velocity, i.e. is zero when the gap time rate of change is zero

(at _t=O,_,2_, etc.) The pressure is anti symmetric with respect to the line

_t=_ and the same level of peak positive and negative pressures are obtained.

The inclusion of fluid inertia gives rise to an additional pressure field
which is in phase with the acceleration of the film thickness H. Figure 3b

shows the pressure wave solely due to fluid inertia for increasing values of

the squeeze film Reynolds number. Minimum and maximum pressures are given at

-t=O and _ where the gap acceleration has its extreme values. The purely

inertial pressure field is symmetric with respect to the line _t=_.

Figure 4 shows the addition of the purely viscous and inertial pressure
waves for increasing values of the Reynolds number. The significant effect
that fluid inertia has on the film pressures is clearly seen; at the minimum

film locations (_t=0,2=,4=) the dynamic pressure has a negative value, while at

the maximum gap locations the pressure gets above the zero pressure line. For

increasing Reynolds numbers, the peak negative pressures p increase in an
absolute sense, while the maximum peak positive pressure p stays relatively

constant.

Figures 5, 6 and 7 show a comparison between the measured and predicted

pressure waves at 22 for Reynolds numbers equal to 2.54, 4, and 5.137,

respectively. The experimental pressure waves show clearly the effect of fluid
inertia as outlined above, and the good comparison with the finite element

predictions is typical of most measurements. Measured pressures at locations

Zl and Z3 are similar in form to those at 72, and are not reproduced here for

brevity.

Figure 8 shows the peak experimental dynamic pressures p at the axial
locations of measurement as the Reynolds number, Re, increases. The
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predictions for the SFD rode1 with a _C=0.25 are also tncluded In the figure,
and it ts seen the predicted axtal pressure drop follows approximately the
measured pressure drop.

Fluid film forces and force coefficients at the axtal locations of
measurement, Zi, are determined by integration of the measured pressure profile
for one rotor revolution. Figures 9 and 10 show, as the Reynolds number
increases, the direct damping and inertia force coefficients, _ and
calculated from the experimental pressure data. The damping coefficients range
between 65% to 85¢ of the damping value for the long SFD model. Comparison
with the predictions is regarded as satisfactory considering the limitations of
the model employed. The inertia coefficients show a better agreement with the

predictions, although discrepancies exist for the largest Reynolds number
tested. Figure 10 also tncludes predicted values of Drr for a SFD model which
only accounts for temporal inertia terms in the flow model [14]; comparison
with the experimental results emphasizes that a large error in inertia force
predictions are made if a linearized model is used in damper design.

Figures 11 and 12 show the total dimensionless film force f and the force
phase angle obtained from the force coefficients given in Figures 10 and 11.
is the angle of the resultant force f and measured from the maximum film
thickness. The predictions from the SFD model with CL=0.25 are in an average
sense close to the values calculated from the measured pressures. The effect

of fluid inertia in the experimental results is seen to be significant
specially in regard to the force phase angle which shows a 20 _ shift, at the
highest Re, when compared to the 90 ° value derived from lubrication inertialess
theories.

Conclusions

The effect of fluid inertia on the pressure field and film forces in a

squeeze film damper test rig with circular centered orbits has been measured

experimentally for one value of the dimensionless orbit radius (e/c=O.5).

Large levels of pressures were observed at the damper central groove and

its influence on the measured pressures in the squeeze film lands Is of

paramont importance in the damper p,erformance. The groove-squeeze film

interface was modelled by assuming a balance between the local axial flow and

pressure drop across the interface. An end coefficient, CL=0.25, was

determined to reproduce satisfactorily the measured pressure field.

Comparison of the experimental results with predictions from a non linear

finite element SFD model are regarded good considering that fluid inertia

renders the problem close to untractable even by numerical means. Major

discrepancies are attributed to the limi ration of the fluid flow model employed

and which is strictly valid for low values of the squeeze film Reynolds number.

Previous analyses of fluid inertia effects on SFDs, which take into

account only temporal terms [14], are shown to be in error for prediction of
fluid inertia SFD forces.

The experimental measurements have shown that there is an urgent need to

develop better theoretical boundary conditions which will account for the local

detailed effects of fluid inertia and film geometry.
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APPENDIX 1

Components of squeeze ftlm damper test rig. Nominal dimensions and general
c haracteri stl cs.

Angular speed of
eccentric shaft: 185.35 rad/sec (1770 rpm)

Journal Diameter:

Length :

Bearing Diameter:
Radial clearance:

Orbit radius :

Dimension

IZl.OOU mmLS.0Oo inJ
119.702 mm(4.712 in)

130.175 mm(5.125 in)

1.587 mm(i/16 in)

0.794 mm(1/32 in)

Central groove

depth :
width :

6.350 ram(l/4 in)

12.700 mm(1/2 in)

Inlet orifice :

Diame ter: 0.400 mm(1/64 in)

Axial distance

from edge of

central groove to

pressure transducers
to PT1 (Zl):

to PT2 (Z2):

to PT3 (Z3):

42.773 mm(1.684 in)

31.554 mm(1.242 in)

20.570 mm(O.810 in)

ZlR

0.657

O.485

0.3157

Dimensionless orbit radius: _ = e/c = 0.50
Dimensionless clearance ratio:_ =c/R = 0.025

Damper test rig L/D ratio: 0.8425

Note: For parameter L/D, groove width has not been considered in calculation.
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APPENDIX 2

1. Characteristics of quartz pressure transducers:

Average sensitivity:

Lineari ty:

Range :

0.7251 mv/KPa (4.99 my/psi)
0.2% of full scale

0 - 6895 KPa (0 - 1000 psi)

2. Characteristics of proximity system:

Scale factor:

Linearity:

Range:

7.865 V/ram (200 my/rail) + 0.4%

0.15% of full scale

1.143 - 3.81 mm (45 - 150 mils.)

3. Oil viscosity formulae and range of viscosities and squeeze film Reynolds
numbers tested:

viscosity _ in centistekes:

log[log(_+0.7)] = a + b Iog[1.8 T("C) + 492]

Factor SAE 30 oil Silicone fluid

a -TI)-TO-_ESr'Z_ 3.87822

b -3.542052 -1.31010

r* 0.997500 0.99530

Specific gravity at
21°C(70°F) 0.8710 0.960

Range of tested oil
temperatures 25 - 44 °C 25 - 37 °C

Range of measured
oil viscosities 226 - 85 cst 100 - 79 cst

Range of tested

Reynol ds numbers 2 - 5.50 4.7 - 5.9

r*: denotes the correlation of linear regression analysis

of experimental data.

4. Dimensional tolerances of the test rig and its orbital motion for circular
centered orbits.

Radial clearance (c): 1.618 mm(0.0637 in) maximum
1.584 mm(0.0624 in) minimum

Dimensiolness orbit radius (e/c): 0.51072 maximum
0.48972 minimum

Dimensionless journal center offsets: _x/c = 1.223 x 10 -5

6y/c = 615.521 x 10-s
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APPENDIX 3

Definition of dimensionless pressure and force coefficients at axial locations
of measurement

Squeeze film Re_,nolds number: Re = ='c /v

Dimensionless pressure: p(e,z) = p/Cp; Cp = p w R'/c z

Radial and tangential dimensionless fluid film forces:

fr = Fr/Cf " Y_p • cos e de d_
0

ft = Ft/Cf = I _ • sin e de dB

N

=___" fr i AB

N

=l=_ fti aB

= z/L, Cf = p = L R S/c =, N: N°of axial locations of measurement

fr i and fti are local dimensionless film forces at Z i, the axial location of
measurement, and given by:

fri=O_(e, Bi)'cos e de; fti=O_(e, Bi)'sin e de

Total film force: fi=[(fri)=+ (fti)] 2 _/=

Force phase angle: ¢i+ 90 ° + tg-_(fri/fti)

measured from maximum gap location

m N

Local damping, Ctti, and inertia, Drrl, force coefficients at the axial
location Z i of measurement are defined as:

Ctti = -fti/¢
m

; Drri = fri/¢

Global dimensional values of the force coefficients are given approximately by:

N

Ctt = -Ft/(_e) = _ L R'/C' _ C-t-ti ABi
i=I

Drr = -Fr/(- _2e) = _ '"L R'/c s _ D_i ABi

1=1
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Re varies L/D=.84, CL=O.25, z/R=.4857

/
/

orbit radius o/c=O.5

\

Figure 4. Predicted total dimensionless pressure vs. time for SFD

model: L/D=O.84, CL=0.25, at axial location Z2.
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NONLINEAR DYNAMICS OF ATTRACTIVE MAGNETIC BEARINGS l

K.V. Hebbale 2 and D.L. Taylor

Cornell University

Ithaca, New York 14853

The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent

electromagnets is presented. Each model includes a state variable feedback controller which has been designed using

the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic
circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's
field relations.

A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points
within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf
bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical

type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and

the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

IN T ROD U C TION

The suspension of a rotating shaft in a magnetic field without mechanical contact or lubrication is an old idea.

Many studies concerning the feasibility of electromagnetic levitation in various applications like magnetic bearings,
high speed ground transportation, electromagnetic dampers for vibration control, etc. can be found in the literature

[refs. 1,2,3]. Now, with advanced electronic control, high speed magnetic bearings are a commercial reality, being

used in grinding and polishing machinery, vacuum pumps, compressors, turbines, generators, and centrifuges [refs.

4,5]. Electromagnetic dampers have been shown to be capable of effectively eliminating vibration at the critical speed

associated with the first bending mode of shafts [refs. 3,6]. In addition, the dampers have been seen to suppress the
system instability associated with the fluid film bearings.

This paper only considers attraction systems under active control. Passive systems using permanent magnets
in repulsion are usually incapable of generating sufficient loa4 carrying capacities. However, the constitutive model

presented here is applicable to electromagnets operating at sufficient speed that the dead weight is carried by eddy
currents generating lift from the lower magnet.

The control system studied varies the voltage to each magnet in response to the motion of the mass. Such a

suspension system with multiple magnets is a multiple input - multiple output system. A state variable feedback

controller, designed on the basis of pole placement technique, is used to stabilize the system and meet the design
specifications. Unlike in a single input - single output system, the multivariable problem has a much richer structure

and has many gain matrices yielding the same pole placement [ref. 7]. The direct method of choosing an arbitrary

vector and reducing the multi-input - multi - output system into a single input - single output system is used to
obtain the gain matrix.

Research and development activity on passive, active, and combination magnetic bearing systems spans over

iThis work was supported in part by the Office of Naval Research under contract no. N0014-80-C-0618.

2Presently at General Motors Research Laboratories.
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150 years. Earnshaw in 1839 demonstrated [ref. 8] mathematically that it is impossible for a pole placed in a static

field of force to have a stable equilibrium position when an inverse square law relates force and distance. Braunbek in
1939 carried out [ref. 8] a similar mathematical analysis specifically for suspensions in unvarying magnetic fields and

deduced that levitation is impossible in such fields when all the materials have relative permeabilities (Pr) greater

than or equal to 1, but possible if materials with/.tr < 1 can be introduced. It follows that it is impossible to achieve

levitation in static magnetic fields, that is, using permanent magnets or fixed current dc electromagnets, unless part

of the system consists of either diamagnetic material (Pr < 1) or a superconductor (/z = 0).

Examples of hybrid passive and active systems appeared as early as 1950 in which photoelectric positional

feedback was used. Stiffness and damping were minimal because of the lack of sophisticated control components.

Early experiments with fully active systems (1957) were largely thwarted by the then high cost and size of control

system components. In time, it became clear that hybrid systems with simple electronics capable of carrying industrial

loads depended heavily on complex mechanical dampers. Meanwhile the cost and size of sophisticated electronics

for purely active systems continued to come down as performance rose. Since active magnetic bearings provide both
damping and support, the choice became clear. Subsequent efforts have concentrated on active magnetic bearings.

Several reviews of electromagnetic levitation are available in the literature [ref. 8,9]. Two electromagnetic
levitation methods have met with success: direct, position feedback control techniques; and ac modulated or indirect

feedback methods. In the latter, the magnet inductance is part of a tuned circuit whose natural frequency depends

on the gap between the suspended mass and magnet. This method has been used to suspend gyroscopic devices for

inertial sensors. It suffers from high eddy current losses and a small range of stable air gaps. Analysis of ac tuned

circuit methods may be found in Kaplan [ref. 10].

For heavily loaded bearings, direct feedback methods have to be used. However, dynamics has not seen as much

attention as it has in journal bearings. Most of the available literature deals with empirical ideas and concentrates

on reliability of the bearing, reducing the size, weight and complexity of tim devices [ref. 11].

Insight can be gained by studying a ferromagnetic suspension (suspended mass is not moving). Moon [ref. 12]

and Woodson and Melcher [ref. 13] are good starting points.

When the suspended rotor is spinning under the magnets and if the rotor is not laminated, eddy currents will be

induced in the material. The induced eddy currents create two kinds of force on the rotor: drag force which leads to

additional power dissipation and coupling of motions of the rotor in two perpendicular directions, and repulsive force
which tends to counter balance the attractive force. Expressions for the drag and repulsive forces can be derived

by studying the effect of material motion on the diffusion of magnetic fields [ref. 13], starting from Maxwell's field
relations. Moon [ref. 12] has shown that in certain magnetic levitation configurations eddy currents can produce a

positive or negative damping force depending on the speed.

Although a good analytical model is not available for eddy currents due to shaft rotation, a number of authors

calculate the eddy current effects in other geometrical configurations using a hypothetical simplified model and finite
element methods [refs. 14,15]. Several studies on linear induction motors are available [refs. 1,16] which can be

extended to magnetic bearings by making several assumptions and manipulations. In the above studies, the authors

calculate the induced forces by cross multiplying the current density vector, which does not take care of the attractive

force when the moving material is ferromagnetic. In this paper, the forces are calculated using the Maxwell's stress

tensor approach which in one calculation gives all the forces involved.

Matsumara [ref. 17] has derived the fundamental equations for a horizontal shaft magnetic bearing taking into

account the rolling, pitching, and yawing of the rotor. In deriving the equations of motion, he assumes that the rotor

consists of a laminated core and consequently no eddy currents are generated in the material. He has proposed an

integral type control system which stabilizes the system without steady state shaft position error.
Hebbale [ref. 18] has studied the nonlinear dynamics in terms of equilibrium points, transient response, on-set

of instability, limit cycle size, and forced response. The material which follows was taken from [ref. 18].

a

A

b

B

Bo

Ci
D

N OMEN CLATURE

Distance of magnet pole corner (near) from center line

Area of magnet pole face, Linearized state matrix

Distance of magnet pole corner (far) from center line

Control input matrix, a Magnetic Flux density

Magnetic flux density under the magnet pole
Feedback gains of controller
Diameter of rotor
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Electrical conductivity of rotor material
Closed surface, Summation sign
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FOUR MAGNET BEARING

The shaft is suspended within four magnets, as shown in Fig. 1. The shaft has high permeability and high

conductivity and is not laminated. (Lamination would serve to inhibit eddy currents.) All of the four electromagnets
are identical, modelled as a coil of N turns on a laminated core of high permeability. The coil has resistance R and

an initial voltage E0 applied. The dead weight is suspended by the difference in forces exerted by top and bottom

magnets. All magnets carry a steady state voltage, adjusted so that at zero speed, the gap lengths under the magnets
are equal.

This fully energized configuration was chosen so that the magnets could generate the effect of repulsion by
decreasing the attraction. The horizontal magnets generate equal force when the shaft is centered and the control

system is commanding equal voltages. The shaft displacement is measured by two coordinates (x,y) as shown in
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Fig. 1,measuredfromthecenteroftheclearancespacein thehorizontalandverticaldirectionsrespectively.When
therotor isnotspinning,thecenterof therotorisat theoriginandthegaplengthsareall equalto A.

If theshaftisnotlaminated,motionof theconductingshaftthroughthesupportingmagneticfieldswillgenerate
inducededdycurrents.Eddycurrenteffectscausebothlossof lift andadragforcein theperpendiculardirection.
It isassumedthattherotor isspinningin theclockwisedirectionsothat thedragforcedueto thetopmagnetacts
in thenegativex direction,that dueto therightmagnetactsin they direction,andsoon.

Severalgeometricalassumptionsaremade.Therotoralwaysremainsperfectlyalignedwithin thebearing(no
tilting). Undersmalldisplacementsthesurfacesof therotor andthemagnetpolefacesareassumedto remain
parallel. Sincetheindividualpolesarelocatedat angles+0 relative to the vertical axis in the case of vertical

magnets or relative to the horizontal axis in the case of horizontal magnets, it is assumed that when the rotor moves

vertically a distance y, the change in gap length for the vertical magnets is ycosO. Similarly, when the rotor moves

horizontally by a distance x, the change in gap length for the horizontal magnets is xcosO. Any other translational

motion of the rotor can be written as a superposition of the motions in x and y directions. The effect of unequal

gap lengths under a vertical magnet caused by a rotor motion in the horizontal direction or vice versa is neglected
because the total gap length under that magnet remains constant.

The control system studied varies the voltage to each magnet in response to the motion of the mass. Such a

suspension system with multiple magnets is a multiple input - multiple output system. A state variable feedback

controller, designed on the basis of pole placement technique, is used to stabilize the system and meet the design

specifications. Unlike in a single input - single output system, the multivariable problem has a much richer structure

and has many gain matrices yielding the same pole placement [10]. The direct method of choosing an arbitrary

vector and reducing the multi-input - multi - output system into a single input - single output system is used to
obtain the gain matrix.

EQUATIONS O17 MOTION

The differential equations of motion describing the response of the rotor are given by

My = _.aff m,g . _, -- M g
(1)

where _F_ og are the vectorially combined magnetic forces from all the magnets. Expressions for resolutes of/_m ag

have been derived in Appendix B for a single magnet. The reader is cautioned that thex, y coordinates in Appendix B

are local tangential and normal directions for each individual magnet and do not correspond the the x,y coordinates
for motion of the shaft. /_mo8 includes the steady state attraction forces and eddy current forces (both repulsion and

drag). Only spin velocity is assumed to generate eddy currents. Motion of the shaft (_,))) doesn't generate eddy
currents.

The remaining differential equations are obtained from a voltage balance in each of the four electromagnetic
circuits:

Ei = IiRi -I'Ni_i i = 1,2,3,4 (2)

where subscripts refer to the top, right, bottom, and left magnets respectively. An expression for the magnetic flux
¢ has been derived in Appendix B.

Expressions for the magnetic forces are given in Appendices A and B. If eddy currents are neglected, then there

are no terms in the differential equations which depend on speed. In general

/_,, og = f (x, y, 11,12,13,14, _) (3)

and

¢i = f (x,_, y, _,[1,[2,[3,[4, _))

The general procedure is to

(a) Determine E0i such that the equilibrium location at zero speed is centered.

(b) Design a state variable controller by pole placement.

(4)
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(c) Determine all steady state equilibrium locations as a function of speed.

(d) Linearize about equilibrium locations to determine stability as a function of speed.

Choosing eight state variables _,y, Yc,x,11,12,13,and 14, Eqs. (1) and (2) can be put into a standard first order
form

=f(X,E, fl) (5)

E = E0 + 6E (6)

b'E = KX (7)

6E = (6EI 6E2 6E3 6E4)T (8)

X = () y Y¢ X I1 I2 I3 I4) T (9)

where X is a 8-vector containing the state variables.

SINGLE MAGNET CASE

The single magnet suspension serves as a paradigm for the more complicated models which follow. Consider

only the top magnet, with x constrained to be zero, and with no rotation ( _ = 0.0). The approximation for Fmag

from Appendix A can be used, giving F_ a8 oc (12, hat). Furthermore, F_ _g is always positive.

This system is well known to be unstable without feedback. A complete state variable feedback would be

x -- x 0 }
_E=[C1 C2 C3]

I -Io

(10)

Fig. 2 shows how the static magnetic force is affected by the choice of C1. Obviously, there is some minimum

value of CI to produce a positive slope at xo = 0.001. High values of C_ produce a stiffer system but with a penalty.

A second ( unstable ) equilibrium point exists. Increasing C1 moves this point closer to the stable operating location.
The safe operating domain in the state space is therefore decreased.

In addition, Fig. 2.5 shows the extreme nonlinearity of the system. The complete equations of motion can be
written as a variation about the equilibrium point (x0, 0,I0)

U=X--Xo

w=I -I0

(11)

where

where

_ v = A v + E
w w

(12)

A = 0 - and B = (13)

a VMgl

[ ](u)5E = C1 C2 Cs v
w

(14)

O_ = t.toN2A (15)

Note, the equilibrium values (Xo, Io, Eo) are related and consistent values must be used so that the position is actually

a fixed point.

1 rEo./--z_ (16)x0=
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E0
Io - (17)

R

The various terms in Eq (13) can be identified as representing the magnetic force, the voltage drop due to back
emf and the voltage drop due to inductance.

The controllability of this system can be determined from the rank of the controllability matrix Q.

Q= [B AB A2B ] (18)

Substituting from Eq. (13) results in a matrix that has full rank. The total dynamic matrix turns out to be

[ , 0 ]()0 u
= Eo Eo V

waR a "M g -- aR C3

(19)

The system is stable if

C3<R

+C1<2R T 1- -_'-4_---_g\ -R--

The first constraint can be interpreted as requiring the coil to behave with positive resistance. The minimum value of

C1 is that required to overcome the effective negative stiffness of the magnetic force. The third condition enforces an

upper bound on C1 which is dependent on C2. This implies that the system cannot be stable without some velocity

feedback. Apparently, the damping induced by the back emf is cancelled by the inductive lag of the coil, leaving an
unstable system unless velocity feedback is used to add dissipation.

Given values of Ca, C2, C3, the system may be linearized about the other equilibrium point ( the one at lower

gap). This point is found still to be unstable. Fig. 3 shows a sketch of the response in 3-D state space. The
stabilized equilibirium point is a focus in two dimensions and has a stable subspace in the other dimension. The

unstable equilibrium point is a saddle point in two dimensions and has a stable subspace in the third dimension. The

presence of the unstable equilibrium point close to the stable one significantly affects the domain of convergence.

Rather than developing this problem further ( including for example, the effect of eddy currents) discussion will

be shifted to a two magnet configuration.

TWO MAGNET VERTICAL CASE

Consider a bearing consisting of only the top and bottom magnets in Fig. 1, with x constrained to be zero.
This problem will study how the eddy currents affect the system, and so Appendix B will be used to represent the

magnetic forces. The rotor is suspended by the difference in magnetic forces due to the top and bottom magnets.

The stationary steady state voltages are such that the gaps are equal top and bottom, and the magnetic flux density
is well below the saturation value of 1.5 - 2.0 webers/m 2.

The 8 state vector reduces to (_, y, 11,13). _Frn ag becomes F,, _ga -Fm _gs. Since the system is constrained in

x, the drag force due to eddy currents and the resulting coupling is neglected. The governing differential equations
are

d

_y = 3_

d Fmagl -Fmag3
-_Y = M -g

(21)

( ) 2,11 COS01
d 2(A -ycos01)+ill E01+3E1 -R111 -
dt 11 - al 2(A - y cos 01 ) + fll

d 2(A-ycosOs)+flS(Eos+SE3-Rsl3)-- 2,13 cos03dt I3 - o_3 2(A -- y cos 03 ) + f13

402



The voltages E01,E02 have been adjusted so that the equilibirium point is y = 0 with no spin speed. It then
follows that

E01
lol -

R1

Eo3 (22)
103 --

R3

M g = Fm ,_gl - F,,, ag3

A state variable feedback controller is designed for this case using the linearized set of equations at zero speed

(f_ = 0.0). Because eddy currents are not a factor at zero speed, the formulae in Appendix A can be used ( giving
a significant simplification over Appendix B ) . The linearized system can be written as

Z=AZ+B 8E3 (23)

A is the Jacobian, B is the control matrix containing the inverse of the inductances of the two circuits at equilibrium
and (tSE1 8E3) T is the control vector for the perturbation voltges to the magnets.

This is a two input - single output system and unlike the previous single magnet case, there are many gain

matrices K yielding the same eigenvalues. The solution to this control problem is discussed in [18]. However, the result

is a gain matrix K such that the poles of the closed loop system ( at zero speed ) are placed at -1000, -1000, -100+
jl00.

(SE1 _ = (_/ (24)
SEa / K t_II

\aI3/

The complete closed loop system can now be considered with speed as a parameter. The equilibrium points
are found by the numerical solution of the right hand side of Eq. (21) with () = 0). It turns out that there are 3

equilibrium points. This can be understood from a graph of the net magnetic fource versus y as in Fig. 4. The point
at y = 0 is a stable equilibrium point. However, points at y _ 4.4 10 -4 and y _ -8.4 10 -4 are also equilibrium
points.

Furthermore, as speed increases, the force curve changes. The central equilibrium point drifts downwards, and

the slope there decreases. Eventually, at sufficiently high speed, the central and lower equilibrium points coalesc and
disappear. This is shown in Fig. 5.

The catastrophe occurs at f2 = 47000rpm for the values of parameters in this paper.

However, before that occurs, a more interesting dynamic phenomenon is observed. The dynamic equations

can be linearized at each (shifting) equilibrium point. Since the equilibrium points must be found numerically, the

linearization was also performed numerically using a central difference scheme in each state variable. The eigenvalues

of the resulting dynamic matrix are shown in Fig. 6 as a function of the shaft speed f2.

At zero speed, the eigenvalues are very near the design points -1000, -1000, -100_+ j 100. The difference is

because magnetic circuit theory ( Appendix A) is used in the zero speed controller design, but the full eddy current

field theory solution ( Appendix B ) is used when linearizing and calculating eigenvalues. The system is stable (
in a small neighborhood of the central equilibrium point ) up to a value of f2 = 40406rpm, at which time a Hopf

bifurcation (flutter instability) occurs.

The system loses stability through a single pair of eigenvalues crossing the imaginary asis at f2 = 41M06rpm. In
such a case, a limit cycle must grow from the bifurcation point. This can be either a stable limit cycle which increases

in amplitude for f2 > 40406rpm or an unstable limit cycle which closes down around the focus as f2 _ 40406rpm.

A standard bifurcation analysis was performed using the program BIFOR2 [19]. A stable supercritical limit cycle is

predicted. The amplitude is shown in Fig. 7 along with the limit cycle actually found by simulation. It should be
noted that the actual phase space is four dimensional and only a 2-D subspace is shown.

The reader is cautioned that the study was not extended to determine what ( if anything) happens to the limit

cycle when the two equilibrium points coalesc and disappear at 47000 rpm.

FOUR MAGNET CASE

Each coil is excited by initial constant voltages denoted by Eoi, i = 1,2,3,4, and the steady state magnetic forces
(at f_ = 0) are such that

Eft" ag = -mghy. (25)
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The equilibrium points for this system at any spinning speed can be determined by equating the right hand side of

Eqs. (5) to zero. That is,

0 = f (X,q, f_) (26)

give the equilibrium points of the system. Eq. (26) represents a set of coupled nonlinear algebraic equations which

has to be solved by a numerical technique. But, at zero speed, the equations decouple in x and y giving two separate
problems, one of which has been discussed briefly. Without feedback control, this system has a single equilibrium

point. It is possible to track the movement of this equilibirium point as speed increases [18].

To find the nature of the equilibrium point at any speed D., the differential equations are linearized and studied

for their behavior in the neighborhood of the equilibrium point. As expected, the eigenvalues of the linearized system

show that the four magnet bearing without active controls is inherently unstable.

A state variable feedback controller is added to the system to stabilize the bearing and provide it with suitable

damping and dynamic characteristics. The effect of a gain matrix which is speed dependent is beyond the scope

of this paper, and the control system is designed using the system characteristics at f_ = 0.0. At zero speed, the

equations of motion are uncoupled, and two 4th order control problems can be solved rather than one 8th order

problem. State variable feedback controllers were designed for each subsystem to place the closed loop poles at -1000,

-1000, -100&-_jl00. This placement provides dominantly second order response over a frequency range of 0 to 5000
rpm.

Note that because the system decouples, all states are not fed back to the control inputs for each magnet. For

example, the variations of the gap length, velocity, and currents of the horizontal magnets are not being fed back to

the vertical magnets and vice versa. Another advantage is that designing a state variable feedback controller for a

four-input two-output system is more involved in terms of computation that two versions of a two-input single-output

system. The feedback gain matrix K for this four magnet bearing is given in Table 3.
where

_E1 q

aE2 / =
_e3 | [K ]X (27)
_E4]

Itisnot possibleto deriveanalyticalexpressionsfor the equilibriumpointsof the system. However, the pattern

of 3 equilibriumpointsfor a pair of magnets in one dimension isextrapolated to an expectation of 32 equilibrium

pointsin2 dimensions.This has been confirmed by numerically solvingthe equations. As in the simplercases,in

designingthe controlsystem,the choiceofpole assignments for the centralequilibriumpoint (and resultingfeedback

gains and stiffness)affectsthe locationof the surrounding equilibriumpoints.A faster,stiffersystem (polesfurther

intothe lefthalfof thes-plane)pulisthe outlyingequilibriumpointsclosertogether,as shown in Fig. (8).

As the spin speed increases,the equilibriumpointsshiftdue to changes in the magnetic forces,and in thiscase

includingthe coupling due to eddy current drag forces.Furthermore, because the dynamics are affectedby the gap

lengths,the dynamic coefficientshave changed, and the stabilityof the system isaffected.Fig. 9 shows how all9

pointsmove within theclearancespace.At low speeds not much happens but above I0,000rpm the pointsbegin to

shift.At about 15,000rpm points 3 and 9 coalesceand disappear.

At any running speed, the system can be linearizedabout any of the equilibriumpoints. Since the equations

are rather unmanagable, the linearization was performed using a central difference method to find the derivatives of

each function with respect to each state variable. The result is

Z = A Z. (28)

where the Z column vector contains perturbations about the speed dependent steady-state vector X. Eigenvalues of

A give stability information about each point. Points 2-9 ( the outlying points ) were always unstable.

The eigenvalues corresponding to the central equilibrium point (1) as a function of the spinning speed are plotted
in Fig. 10. The system is stable in a small neighborhood around the equilibrium point up to about 9306 rpm. As

the spinning speed is further increased, a pair of complex conjugate eigenvalues crosses the imaginary axis with all
the other eigenvalues still in the left half of the complex eigenvalue plane. This means that the system undergoes a

classical Hopf bifurcation to flutter instability at the critical speed of 9306 rpm.

Because of the existance of the outlying unstable equilibrium points, a supercritical limit cycle was expected.

However, a conventional Hopf bifurcation analysis on the full set of nonlinear equations, using BIFOR2, indicated

that an unstable limit cycle will enclose the central equilibirum point for speeds less that D_r. Fig. 11 shows three

404



transient responses at f_ = 2500 rpm, calculated by numerical integration of the complete set of nonlinear
equations. Two converge to the equilibrium point and one diverges. The domain of convergence was approximated

by slowly incrementing x(0) and y(0) and noting convergence or divergence. The domain of convergence is marked

in Figs. 11,12. This is an overly simple approach because changes in the initial conditions of the remaining 6 state

variables are not explored. However, it does lend credence to the prediction of an enclosing unstable limit cycle.

Forced response of this system is discussed in detail in [18]. The global resopnse is quite different from what
might be expected from a linear analysis. The linear eigenvalues at _ = 2500 rpm indicates a damping ratio of

0.7. However, the orbit resulting from a periodic excitation of 25N only converges quite slowly (damping ratio <_

0.05). Further discussion is beyond the scope of this paper. The topic is opened here only to point out the pitfalls

in extrapolating a linearized analysis.

CONCLUSION

Without considering eddy current effect, there is no speed dependent term in the constitutive model for a

magnetic bearing. Eddy current cause a loss of effective lift which, viewed as as external load, causes a classical sag
for a proportional controller. More importantly, eddy current drag causes coupling between (x,y). Any change in

the x gap affects the drag force in the y direction. Straightforward proportional control produces extra equilibrium

points as the applied voltage is driven negative but the force remains attractive. These points are unstable but affect

the global response of the system. In fact, designing a stiff system draws these points quite close to the equilibrium

point. The equilibrium point is surrounded by an unstable limit cycle. Furthermore, as speed increases, the unstable

limit cycle shrinks until the central point loses stability in a classical Hopf bifurcation. Above critical velocity, there

is no equilibrium response.

The loss of lift is about 30% at 12500 rpm, which agrees approximately with experimental results of Yamamura

[20]. The expression for the drag force under a single sinusoidal field density wave is the same as that obtained by
Meisenholder [1].

The system may also lose stability by a simple catastrophe, the coalescing and joint annihilation of two equi-
librium points. For the parameters used in this paper, this happens after the Hopf bifurcation. However, further

parameter studies are needed to determine if this might occure before the Hopf bifurcation.

Further study is needed in designing state variable controllers. The zero speed design point is useful because it

decouples the system, reducing the order. However, many other types of control can be envisioned.

The size of the enclosing unstable orbit is quite small, as shown in Fig. 12. A transient excitation could rather

easily throw the shaft outside this into an unstable response. Also, a periodic excitation such as rotating unbalance,

produces an orbit about the central equilibrium point. Simulation has indicated that if this orbit is large enough
to touch or exceed the enclosing unstable limit cycle, the system becomes unstable. The loss of stabiliity is quite

complicated, with bifurcations of the periodic orbit and possibly bifurcation to chaos. Discussion of this is beyond

the scope of this paper.

Further problems which should be investigated are the effects of flux saturation in the magnetic material. Also,

the model developed in Appendix B is applicable to repulsion type electromagnets, which would run at high speed

and likely require superconductivity to implement. Stability of these bearings has not yet been addressed.

A final comment is the topic of bearing coefficients ( equivalent stiffness and damping matrices ). The situation is

different from that of journal bearings, it is not possible to determine the 8 classical coefficients just by differentiating

the force expressions with respect to x, y,_, p. The dynamics of the electrical components must also be incorporated.
However, in all cases, the response in one 'mode' was very fast( Fig. 3) indicating that some subspace reduction

might be possible.

APPENDIX A

ESTIMATION OF MAGNETIC LIFT FORCE

Magnetic circuit theory can be used to approximate the magnetic lift force of a single magnet, but

eddy currents must be neglected. The following assumptions are made in deriving the expressions for the
magnetic lift force:

1. Field fringing is neglected.

2. Magnetization curve is linear (B =/_H).

3. Magnetic flux density B and field intensity H are uniform over cross-sections of the core, gap, or mass.
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An electromagnetic circuit is considered whose elements are gap, core, and suspended mass, as shown in Fig.

A.1. Each element has constant crossection Ai and length Li. The magnetic flux ¢ is assumed constant throughout

the circuit, and F is the total magnetomotive force within the circuit elements.

The density relationship ¢ = BA and the constitutive law B =/zH can be used to express field intensity in the

ferromagnetic material in terms of the field intensity within the air gap.

By definition F = fHdl Integrating around the circuit and equating F to the current linked (NI) results in an

equation for field intensity within the air gap. The field energy is determined within each element w = ½#H and the

total field energy is obtained by a volumn integral over all the elements.
By definition, the force is the rate of change of stored field energy with respect to the mechanical displacement.

#°N2AI2 (A.1)
F.o, = (Zx+ +

In addition, the total flux ¢, the magnetic field density B, the magnetic flux linkage _., and the inductance L can be

expressed in terms of the gap length x and current I as:

¢_= poNIA (A.2)
(2x + _--:T+c-z-/t,2 )

B = #oNI (A.3)

X = IroN 2IA (A.4)

(2x +_-_ + c-z-/*,2 )

L = #oN 2A (A.5)

(2x + _ + _--_)/t,1

APPENDIX B
ESTIMATION OF MAGNETIC FORCES

INCLUDING EDDY CURRENT EFFECTS

Motion of a conducting material through a magnetic field will cause eddy currents to be generated within the

material. These eddy currents will produce an additional magnetic field and change the net force acting across the

air gap. The complete eddy current analysis for 4 magnets as shown in Fig. 1 is analytically intractable. (It is

probably amenable to finite element techniques.) An approximate solution is developed in Ref [18], and only the

assumptions, general method, and results will be presented here.
As the shaft starts spinning, the eddy currents tend to repel the applied magnetic field and the skin depth of

penetration becomes very small. This motivates a semi infinite assumption in the radial direction.
First, the problem will be unwrapped and considered as periodic on a half-space. However, before net forces are

calculated, the surface tractions predicted by Maxwell's stress tensor will be wrapped around a circular shaft.

Second, each magnet will be considered separately, and the magnetic field for each magnet can be determined
individually. The net force of each magnet is then determined, leading to 4 vector forces which are then summed

vectorially. An alternative (more complex) solution is developed in Ref. [18] to find net magnetic field for all four

magnets at a single system (simultaneously). The net magnetic field of all 4 magnets may be determined, and a

single force predicted. However, this approach requires the assumption that all the gaps are equal. At low spinning

speeds there is no difference between the two methods. Only at very high speeds do the two differ. (For parameters
in this paper, 4% at 105 rpm). The simpler technique has been used here.

The square wave applied flux density is expanded as a Fourier series

B(x) = _i -_ [cos(_-_--_) --cos(_-)]sin(_- ) (B.1)

or

B (x) = _,_Bisin(kix) (B.2)
i

The field density and current density distributions within the moving material solve a linear problem, and hence

the principle of superposition can be invoked and each harmonic handled separately. After finding the field density
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inside the whole region, the forces acting on the rotor can be determined by calculating the Maxwell's stress tensor
and integrating it over the surface area.

The following assumptions are made to simplify the analysis:

1. The conductive plate is infinite in x,z and positive y directions.
2. The conductivity o" and permeability/t are constants.

3. The field problem is two dimensional.

The equation that describes the distribution of the magnetic field in the conducting medium is derived from
Maxwell's field equations [7].

1 V2ff + _ff
#a "_- = V x (17 x if) (B.3)

where ff = Bxe'1 + Bye_2(e-'l and e'2 being unit vectors in x and y directions respectively). The y component By

is determined from the y component of (B.3) The remaining component Bx can be determined from the relation

V-B = 0. The magnetic field is driven by the applied magnetic field density, and so solutions with the same traveling

wave dependence on (x, t) are assumed. That is, it is assumed that the flux density takes the form

ff = [Bx(y)b'l -FBy(Y)_2]e i(kx-_°`) (B.4)

The solution form in the y-direction is ef qY where

q, = ki _[1-t-js=ki_l +j.l'tk-_V (B.5)

i

Eqn (B.5) can be used to predict the skin depth.

The solution domain is divided into two regions, denoted by subscripts 1 and 2 respectively:

Region (1), the air gap where a = 0(0< y < A); and

Region (2), the moving conducting medium (A < y < oo).

The solutions within each region have two constants of integration, determined from the following 4 boundary
con dition s:

(1) one is set to zero because the solution cannot grow as y ---_oo.
(2) the applied flux density at y = 0

(3) At the interface y = A, the condition of conservation of flux V .B = 0 is invoked. Using the divergence

theorem, this leads to By1 = By2.
(4) at the interface, V x H = 0. Using Stokes theorem, this leads to H,1 = Hx2.

Hence, the flux density distribution throughout both regions can be determined.

The forces acting on the conducting medium are calculated by Maxwell's stress tensor [8]. For magnetic problems
with currents and no charges, the forces acting on a body are given by

(B.6)

where Z is any closed surface surrounding the body and not containing any other body and B is the value of the

field on the closed surface., Choosing a closed surface Y. such that it extends from --oo to oo and includes only the
conducting medium, the integration is carried out with h = -_2.

The complete flux density distribution in the whole region of Fig. B.1 due to all the applied sinusoidal waves is

determined by superposing the individual fields. Each component of the field (B,,By) is an infinite series in sine or

cosine terms. The value of the ff field at the interface, which is required for calculating the forces, is calculated by
substituting y = A and letting Bx = B,1 and By = By1. Substituting for B and evaluating the integrals, the forces
per unit area acting on the material turn out to be

B_ si
1 12o E (n2i +n22i)Re_+jsi (B.7)F_, - 4//0/2
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where

1- ,' 2,[1-( ) +s_]
F, 4#0 E (n2i . n2, )

_tTV

si - kl

and where nl and n2 are the real and imaginary parts ofyi.

)'i = [cosh(kiA ) + !1o _-sinh(kiA )]
# gi

(B.8)

(B.9)

(B.IO)

Eqs. (B.7) and (B.8) are the expressions for the drag and lift force per unit area acting on the moving conducting

medium. As expected, when the currents are not induced in the slab (V=0) (S=0), there is no drag force (F_) and

Fy is the magnetic attractive force. There is an optimum value of V at which the maximum force per unit area Fx
is produced. The lift force decreases as V is increased, and at some value of V the force becomes zero, and at high

values acts in the opposite direction (repulsion). At very high values of V, there is no drag because all the flux is
excluded from the material and the repulsion force reaches an asymptotic value irrespective of the permeability of

the material.

It is interesting to note that the integral and the summation are interchangable in order. That is, the force for

one component of the fourier series can be determined and then summed or, as in the preceding, the fields summed
and the force determined. This is perhaps surprising because the problem is nonlinear, but the infinite series for Bx

and By are made up of sine and cosine terms which are orthogonal to one another and all the cross terms drop out

during integration over one period.
The total flux can also be calculated and compared with that predicted by magnetic circuit theory (Appendix

A). The more detailed solution is about 8% lower, showing the effects of magnetic circuit assumptions (uniform field

density and no leakage in air gap).

For the magnetic bearing, the forces acting on a rotating shaft are calculated by wrapping one period of the B
field distribution back onto the circular shaft. Choosing a closed surface _ on the circumference of the rotor and

simplifying the integral in Eq. (B.6) give the forces acting on the rotor per unit width as

JtD xD
"'2-- "/--

1 BxB,cos(-_)dx 1 _B2)sin(__)d x
liD zD

--'£-- --"12--

(BAD

where

_- ,q-

1 -_)dx 1 _B2x)COS(__)dxF, 1- f BxB,sin( f (BE#o 2ao
xD _D
-_ -- --_;-

(B.12)

B_l(y)y A _ 1#o_
Bx = = -- Bi ejklx

= )'i -_

By = Byl(Y) y=A = ETi ffffTiBieik'x

(B.13)

(B.14)

The effect on the values of the forces of the number of terms used in the fourier series was investigated. The

magnetic forces were calculated at different spinning speeds using 10, 25, 50, 100, and 500 terms in the series. There

is very little change in the results when the number of terms used in the series is 50 or more. There is approximately

3% change in the lift force when the number of terms is increased from 10 to 25 or from 25 to 50. The change is

much less in the case of drag force calculations. Striking a compromise between these two, and to save computer

time, 25 terms were used in all the calculations in this paper.
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TABLE 1

Single Magnet Suspension Parameters

Mass M = 8.91 kg
Acceleration due to gravity g = 9.80665 m/sec 2
Area of cross section A = 0.00025 m 2

Initial voltage E0 = 5.0 volts
Resistance of coil R = 3.0 ohms

Path length in core L1 = 0.28 m

Path length in Mass L2 = 0.05 m

Permeability of free space/10 = 4_E - 07Him
Relative permeability of core material/.trl = 10000.0

Relative permeability of mass material/it2 = 100.0
Number of turns N = 800

FEEDBACK GAIN MATRIX: Poles at -1000, -100 + jl00

K = [261013.13 1486.86-92.44]
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ROTOR

MAGNET

TABLE 2

Two Magnet Bearing Parameters

Diameter of rotor D

Mass of rotor M

Path length in rotor L2
Relative permeability of mass material/It2

Electrical conductivity of mass material o"

= 0.15 m

= 15.6 kg
= 0.05 m

= I00.0
= 1.0 E+07 mho/m

Pole angle

Path length in core L1

Relative permeability of core material #rl

Area of pole face A
Width of pole face W
Number of turns N

Distance of pole corner a

Distance of pole corner b
Initial voltage (top) E01

Initial voltage (right) Eo2

Initial voltage (bottom) E03

Initial voltage (left) Eo4

Resistance of coil R

= 15 degrees
= 0.28 m

= 10000.0

= 0.00025 m 2

= 0.008333 m

= 800.0

= 0.0075 m

= 0.0375 m

= 7.5 volts
= 2.5 volts

= 2.5 volts

= 2.5 volts

= 3.0 ohms

TWO MAGNET FEEDBACK GAIN MATRIX

Poles at -1000, -1000, -100 + j 100

I 4570751.1 11052.9 -565.5K = 1523583.7 3684.3 -188.5

KT_

TABLE 3

Feedback Gain Matrix for Four Magnet

"4570751.1 0.0 1523583.7

11052.9 0.0 3684.3

0.0 7185390.6 0.0

0.0 18021.2 0.0

-5675.5 0.0 -188.5

0.0 -3500.0 0.0

-2200.5 0.0 -733.5

0.0 -3677.7 0.0

Bearing

0.0"

0.0

7185390.6

18021.2

0.0

-3500.0

0.0

-3677.7
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Figure 2: Effect of Feedback Gain on Stiffness of Single Magnet Suspension
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Currently, speeds in rotating machines are limited because of bearing problems,

internal fluid flow forces and machine unbalances which produce large vibrations. A

recent high technology development is that of magnetic bearings, which replace the

usual rolling element or fluid film bearings. The new magnetic bearings can largely

eliminate the wear and lubrication problems of oil lubricated bearings because the

rotating component is totally supported in air by magnetic forces. Another

application is as a vibration controller which is used in conjunction with existing

bearings. In this case, the shaft may be made longer so that additional stages may

be added or seal clearances reduced because of lower vibration levels. Thus, machine

performance may be increased.

This paper discusses a magnetic bearing which was designed and tested in a

flexible rotor both as support bearings and as a vibration controller. The design

of the bearing is described and the effect of control circuit bandwidth determined.

Both stiffness and damping coefficients were measured and calculated for the bearing

with good agreement. The bearings were then placed in a single mass rotor as support

bearings and the machine run through two critical speeds. Measurements were made of

the vibration response in plain bushings and magnetic bearings. Comparisons were also

made of the theoretical calculations with the measured peak unbalance response

speeds. Finally, runs were made with the magnetic bearing used as a vibration
controller.

INTRODUCTION

Magnetic bearings are beginning to be used in a wide range of flexible shaft

rotating machinery. Compressors for pipeline service have recently had magnetic

bearings installed to reduce vibrations and reduce the possibility of fires related

to oil lubrication. They have also been tried in large pumps, turbines and other

rotating machines.

A magnetic bearing consists of four or eight electromagnets arranged radially

around a shaft. The dynamic properties of the bearing are controlled electronically

and stiffness and damping coefficients can be chosen, within certain ranges, to mini-

mize the rotor vibrations. Such flexibility is not possible with conventional fluid

film and rolling element bearings. Other advantages include removal of oil seals,

*The authors would like to thank the Institute for Computer Aided Engineering of the

Center for Innovative Technology of the Commonwealth of Virginia for partial support

of this project.
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ability to operate in high temperature or hostile chemical environments, reduced
operational costs, and significantly lower friction losses than other bearing types.

The first fully active magnetic suspension system was patented in 1957 [i].
Neiman, et. al [2], reported on the investigation of magnetic and electric forces for
rotating shaft systems. Their work showedlimited success with fully supporting a
rotor due to axial instabilities.

The dynamics of a single massrotor on rigid supports with control forces applied
at the mass are reported in [3]. This work was then extended to include flexible
supports [4]. Moore et. al [5] investigated the feasibility of active feedback
control for a multimass flexible rotor with force actuators at bearing locations
rather than at the shaft center. It was demonstrated that various levels of damping
applied at the bearings would be a practical method of reducing vibrations.

Stanway and O'Reilly [6] presented a state space formulation for a flexible rotor
with flexible supports. The method was further developed with a numerical example
[7]. Forces were applied to the bearing housing to help stabilize plain oil film
bearings.

Nikolajsen and Holmes [8] investigated an electromagnetic damperas applied to a
transmission shaft. A test rig was built and tested, showing very good agreement
with predicted amplitude through a critical speed. Gondhalekar and Holmes [9]
designed and built a hybrid passive-active magnetic bearing system applied to a
flexible transmission system through two critical speeds. Kaya and Roberts [i0]
further demonstrated the usefulness of active control flexible transmission shafts.
They also developed an optimization method which would lend itself to use with a
digital control approach with speed dependent characteristics.

Schweitzer and Ulbrich [11] reported on a vertical centrifuge controlled by using
active magnetic bearings. Traxler and Schweitzer [12] also presented results for a
rigid rotor. The emphasiswas on the force and current measurementswith the rotor
stationary and rotating. The sameauthors [13] described a three level approach to
designing magnetic bearings. Salm and Schweitzer [14] presented a model for a
flexible rotor controlled by an active magnetic bearing at the center of a single
mass rotor. Ulbrich and Anton [15] investigated the integration of displacement and
velocity sensors within the magnetic bearing.

Bartlett and Taylor [16] developed a model of a solenoidal suspension and applied
it to a flexible rotor. Hebbale [17] did a dissertation on the nonlinear dynamics of
magnetic bearings. Yamamura[18] developed an analysis of active suspension for high
speed vehicles.

Several articles have been published about the commercial possiblities of
magnetic bearings [19,20]. The benefits claimed are operating speeds up to 80,000
rpm, rotor diameters of 15.2 mmto 610 mm(0.6 to 24 inches), load per bearing from
0.31 N to 2.0 E5 N (0.07 ib to 45,000 ib), ambient temperatures from -251° C to 449°
C (-420 F to 840 F), and operating environments of vacuum, air, helium, hydrocarbons,
steam, uranium hexaflouride, sea water, liquid oxygen, and liquid hydrogen.

Twoprevious works related to the magnetic bearing or its controls have already
been published or accepted for publication. Allaire et. al [21] described the basic
control schemeas applied to one pole magnetic support system. Humphris et. al [22]
presented a theoretical description of the magnetic circuit and experimental
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measurementsof the stiffness and damping coefficients. Several parameters in the

controls were varied with agreement to within about 20 to 30%.

The purpose of this paper is to discuss magnetic bearings which were reported in

[22] and tested in a multimaee flexible rotor both as support bearings and as a

vibration controller. First, a single mass rotor was supported in conventional

bushings and the magnetic bearing used as a conroller near the center mass. Second,

two disks for the magnetic bearings were added to the single mass rotor and the

magnetic bearings used in a support mode.

MAGNETIC BEARING

The magnetic bearing [22] used in this study has four electromagnets distributed

radially around a 12.7mm (0.5 inch) shaft as shown in Fig. I. A soft iron disk 58.4
mm (2.3 inches) in diameter and 25.4 mm

(i.0 inches) long was placed over the

shaft to increase the area and provide a

good magnetic circuit. The disks were

placed either at the desired controller

location or at the normal bearing

support locations. Each magnet

consisted of a solid soft iron core

forming a horseshoe, with two pole faces
cut to a diameter of 60.5 mm (2.38

inches). This gives a nominal clearance

of 1.0 mm (0.040 inches). Each leg of

the magnet was wound with 920 turns of

wire. All magnets were the same. A

rigid aluminum housing, shown in Fig. I,

provided the support for the magnets.

The shaft weight was supported by

having a larger steady state current in

the top magnet when the support mode was

employed. The other three

electromagnets had a steady state

current in them to provide a value about

which a set of linearized properties
were determined.

RIGID HOUSING

HORSESHOE

MAGNET _

I I I I
I I I I

[ I I =
J I i t i t

li' 'il

MAGNETIC

DISK

Figure i. Magnetic Bearing Geometry

Position sensors were located vertically and horizontally on the shaft a short

axial distance from the bearing. These were standard eddy-current probes of the type

normally used to monitor rotating equipment in the field. Tests showed that the

magnetic fields from the bearing did not affect the probe measurements at a 25 mm (I
inch) distance.

The magnetic bearing control system is described in the Appendix. Components of

the system are presented and the algorithms used to model them. Typical bearing

linearized stiffness and damping coefficients are presented.

MAGNETIC CONTROLLER

In the controller mode, no rotor weight was supported. All load was carried by

the conventional bearings at each end. Thus all steady state current levels were the
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same in all four electromagnets. Also, the required steady state currents in the

control mode were much less than the current required in the support case since no

load was carried. Similarly the controller dynamic coefficients (stiffness and damp-

ing) could have lower values because they were applied at the rotor center. Overall

the power required for the controller mode was much less than for the support case.

The rotor was first assembled with the BEARINGSPAN

magnetic bearing as a controller, with the SHAFTCENTER
DISPLACEMENT CONTROLLER

configuration illustrated in Fig. 2. The SENSOR SENSOR SENSOR

shaft had two masses on it, a center disk _ _ _
of weight 8.0 N (1.8 Ib) and dimensions F-7 d _ U" II

73.15 mm (2.88 inches) in diameter by 25.4 _ ELEX,RLESHAFT
m (i.0 inch) thick, and the magnetic ' FLEXIBLE SLEEVE_ r_

,:' COO_L'NGREAR'NG _'_Tbearing disk as described in the previous MOTOR

section The bearing disk weighed 4.9 N MAGNETIC
" CONTROLLER

(i.i ib). The shaft was 12.7 mm (0.5

inches) in diameter and 660 mm (26.0

inches) long. The hearing span was 508 mm
(20 inches) with the center disk at midspam

SENSOR

U

SLEEVE

REARING

Figure 2. Diagram of Flexible Rotor

Supported in Conventional Bearings

With Magnetic Controller
and the bearing disk at the one-third span.

The total rotor weight for shaft plus both disks was 24.9 N (5.6 ib). As shown in

Fig. 2, the rotor extended to a flexible coupling, which connected the shaft to a

small electric motor drive.

At each end of the rotor were conventional sleeve bearings. They are of oil

impregnated bronze construction backed by a rubber 0 ring. This type of bearing is

common in many small laboratory rotor kits and is considered sufficient to

demonstrate the principles of vibration reduction by magnetic controllers. The

stiffness of the sleeve bearing and associated housing is approximately 3.5 E5 N/m

(2000 Ib/in). Also, the effective stiffness of the coupling is estimated to be about

8.8 E4 N/m (500 ib/in).

The rotor was run up in speed through one critical speed with the controller

turned off. Figure 3 shows the horizontal

peak to peak response. The peak response 625

occurs at approximately 2845 rpm at 0.52 m _5oo
i

(20.5 mils). With the controller on, the _,

critical speed increases to approximately 375

3610 rpm and the amplitude reduces to about z_
0 250

0.063 mm (2.5 mils) For this case, the
• O

-- 125

magnetic controller gains were set to have
a calculated stiffness of 1.2 E5 N/m (700 o

Ib/in) . o

The critical speed increased 28% and

the vibration level dropped to 12% of the

original value• In this particular

experiment, no efforts were made to

optimize the vibration reduction by

HORIZONTAL

/ \ ,,o.,.__, ,
I 2 3 4 5

SPEED, rpm x ]0 -3

Figure 3. Flexible Rotor Response at

Quarter Span, with and without

Magnetic Controller

modifying the magnetic bearing control settings. In general, it would be expected

that the introduction of stiffness and damping at the center of the rotor should

greatly reduce the vibration levels. The point being made here is that the magnetic

damper works and the measured results can be compared to predicted rotor behavior.
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Figure 4 shows the rotor calculated first critical speed and mode shape, without

the magnetic controller, determined by a standard transfer matrix method. The

calculated value is 2766 rpm or only about 3% below the measured value. This

indicates that the rotor model is a good one. Figure 5 gives the calculated critical

speed and mode shape with the controller turned on. Again the calculated value of

3556 rpm is very close to the measured value of 3610 rpm.

(2766 rpm)
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Figure 4. Computed Critical Speed and

Mode Shape Without Magnetic Controller

Figure 5. Computed Critical Speed and

Mode Shape With Magnetic Controller

A series of spectrum analysis plots

versus time, illustrating the effect of the

magnetic controller, is shown in Fig. 6. _-

The rotor was run at a constant speed of [

2600 rpm or just below the first critical 5_[

speed. Initially the controller was "off",

with no current in any of the magnets. The

vibration amplitude is large and constant _ '_

over time. After approximately 32 seconds, §
the current was turned "on" in all four _

magnets. The amplitude of vibration _ _[

immediately dropped to a very low level and

remained at that level with no observable

transient response.

MAGNETIC SUPPORT BEARING

The rotor-bearing configuration was

changed so that two identical magnetic

bearings were used to replace the

conventional bearings. Figure 7 illus-

trates the geometry. It had three masses

on it - a center disk of weight 8.0 N

(1.8 ib) and two magnetic bearing disks

CRMP SCRLE - 2 _!LS, Pk-Pk PER POINT)

L.

f_

22r

.i ........ _ _:r

FREQUENCY (EVENTS/M[N x 1{_-3)

Figure 6. Spectrum Analysis Plots
showing the effect of Magnetic
Controller "off" and "on"

weighing 4.9 N (1.1 ib) each. Disk and shaft geometries were identical to those used

in the controller mode. The total rotor weight was 24.9 N (5.6 ib). Again the

bearing span was 508 mm (20 inches).

Backup bearings were placed inboard of each magnetic bearing. Each was a

conventional sleeve bearing of the type described in the previous section except that

they were bored out to a clearance of 0.51 _ (0.020 mils) radial. The magnetic

bearing radial clearance was much larger at 0.76 mm (0.030 inches). The rotor

amplitude of vibration near the bearings was always well below this value. Thus
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BEARING SENSOR L_

u

FLEXIBLE SHAFT

t COUPLING _/:_ SHAFT
MOTOR MASS

MAGNETIC

BEARING

_ BEARING SPAN the magnetic bearings were activated.
SHAFT CENTER

BEARING BACKUP DISPLACEMENT BEARINGincluded start-up conditions (no shaft

SENSOR SENSOR rotation) or running through critical

_ speeds.

BACKUP_ [_ The same type of noncontact induction
BEARING )77_ probes were employed for the rotor. Two

MAGNETIC sets were used at the magnetic bearing
BEARING

disks for both feedback control and

Figure 7. Diagram of Flexible Rotor

Rig Supported in Magnetic Bearings

these bearings were never in contact when
This

monitoring. A third was placed adjacent to

the center mounted disk for monitoring.

Supporting the rotor weight required the use of higher currents in the top

magnets than in the sides and bottom magnets. Typical values are reported in [22].

Both bearings had essentially the same operating conditions.

A preliminary run was made with the rotor in conventional bearings (without the

magnetic controller). Then, the conventional bearings were immediately replaced by

the magnetic bearings in exactly the same locations. Thus the shaft had the same
unbalance level in the center disk. The state of unbalance of the added bearing

disks was unknown.

750

Figure 8 gives the results plotted on the

same axes In the vertical direction, the - 6oo
• O_

peak amplitude was 0.72 n_n (30 mils) at about _ 45o

2,400 rpm with sleeve bearings. When the oZ 3oo

magnetic bearings were used, the vibration
',D 150

level dropped to about 0.14 mm (5.5 mils) at

approximately 2,000 rpm. Thus the vertical o
O

vibration level was reduced by a factor of

greater than 5. It had gain values of Kg =

1.75 and Kr = 20. In the horizontal
direction, the vibration level was reduced

from 0.56 mm (22 mils) with the sleeve bearing

to about 0.13 nm (5 mils) with the magnetic 750

bearing. The vibration level was reduced by ,_60o

factor of 4. Also, Kg = 1.0 and K r = 20 were _L45o
the gain settings for the horizontal

direction. For this preliminary run, no

attempt was made to "optimize" the magnetic

bearing settings to reduce vibrations•

Two additional cases of runs were made

with the magnetic bearings in the support

mode. The cases are

BUSHING /_

l 2 :3 4

SPEED, rpm x 10 -3

a) vibration level in vert. direction

300

150

0
0

BUSHIN_ _

I ".J _ I - I

1 2 3 4

SPEED, rpm x 10 -3

b) vibration level in horiz, direction

Vertical Gain Horizontal Gain

Ca se Kg Kr Kg Kr

1 1 2 4 10

2 4 8 4 I0

Figure 8. Comparison of Flexible Rotor

Vibrations at Shaft Center For

Conventional Bearings vs. Magnetic

Bearings
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Again the primary objective is to compare the measured first critical speeds to the

calculated values based upon the magnetic bearing stiffness as evaluated by the

theory in [22].

Figure 9 shows the vibration amplitude and phase angle vs. speed at the rotor

midplane (near the center mass) for Case 1. Results from probes near the bearings

are similar but with lower amplitudes. Figure I0 gives the frequency spectrum for

the vertical direction at the midspan. The vibrations are nearly all synchronous.
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Figure 9. Horizontal and Vertical Midspan Figure i0. Frequency Spectrum for

Vibration Plots for Rotor in Magnetic Vertical Direction at Midspan--Case 1

Support Bearing - Case 1

For Case i, peak vibrations occur at 1860 rpm in the vertical direction and 2320

rpm in the horizontal direction.

bearing stiffnesses are

Direction

Again using the theory from [22] the calculated

Case I

Stiffness N/unn (Ib/in)

Inboard Outboard

Vertical 33 (187) 65 (370)

Horizontal 411 (2335) 333 (1890)

Figure ii shows calculated critical speeds and the mode shapes for the above

stiffnesses. In the vertical direction, the calculated value is 1803 rpm. This is

only 3% below the actual value. The horizontal calculated critical is 2650 rpm which

is 14% above the measured value.

For Case 2, the vertical gains were increased. Figure 12 gives the resulting

vibration plot. The vertical critical speed increased to 2720 rpm (1860 rpm for

Case I) due to the higher bearing stiffness. Calculated bearing stiffnesses are

shown on the following page. The calculated vertical critical speed is 2672 rpm.

This is below the measured value by 3%. In the horizontal direction, the measured

peak was 2260 rpm while the calculated value is 2625 rpm. The mode shapes for Case 2

were similar to those for Case I.
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Figure 12. Horizontal and Vertical

Midspan Vibration Plots For Rotor In

Magnetic Support Bearing Case 2

(Vertical Kg=4, Kr=8 Horizontal Kg=4,

Kr=10)

Direction

Vertical

Horizontal

Case 2

Stiffness N/mm (Ib/in)

Inboard Outboard

372 (2125)

420 (2400)

543 (3100)

337 (1925)

CONCLUS ION S

This paper reports the effect of a magnetic bearing used in both controller and

support modes. Generally the conclusion is that the magnetic bearing strongly

affects the vibration levels in the rotor. Using the magnetic controller reduced the

vibration level to 12% of the original value in the vertical direction. In the

support mode, the vibration level decreased by about the same factor in the vertical

direction as compared to the rotor in conventional support bearings. This reduction

of vibration levels was achieved without optimizing the settings of the control

parameters.

Another result of this work is a comparison of the measured and calculated

critical speeds. Table 1 gives the summary for the cases considered in this work.

In each case the stiffness values were evaluated using the method in [22]. The

largest error for the calculated critical speeds is 16%. Overall, this indicates

that machine undamped critical speeds can probably be accurately determined

theoretically before magnetic bearings are installed in a machine.
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APPENDIX- MAGNETIC BEARING PROPERTIES

A block diagram of the control circuit for each magnet in each bearing is shown in

Fig. A.I. It operates as follows. The eddy-current induction probe senses the posi-

tion of the shaft. The signal goes to the sensor amplifier which has a fixed gain,

low pass filter and reference adjustment. A compensator has an adjustable position

gain Kg and rate gain Kr. These are used to vary the bearing stiffness and damping.
The next components are the summer and lead network. Finally the signal passes

through the position amplifier which determines the steady state current provided

to the electromagnet and hence the operating position of the shaft in the bearing.

Specific numerical values for the magnetic bearings are given in [22]. They are

omitted here due to length considerations. Also the theoretical model of the bearing

properties is developed and presented in [22] with comparisons to measured results.

One of the important characteristics of
SENS0i_

any bearing is the stiffness. An advantage _ c...........s....... _K _...._o_ .......

of the magnetic bearing is that the

stiffness can be varied simply by changing _" _4 +the gain in the control circuit. Figure

A.2 shows the theoretical and measured

static stiffness of one magnet of the

bearing used in a support mode for two

control circuits, A and B, with different

bandwidths as a function of proportional ........

control circuit gain. The agreement is _o_r _............
within about 20%, with the theoretical "__._ _ ....

5HA

values being higher than the measured
_T_

stiffnesses. Figure A.I. Block Diagram of Magnetic

Support System

Another important characteristic of a bearing is the damping coefficient. Often

the primary vibration reduction in rotating machines comes from the oil lubricated

bearings. Magnetic bearings should be at least as effective as conventional fluid

film or rolling element bearings with squeeze film dampers. Figure A.3 gives a com-

parison between the theoretically calculated damping coefficient and measured values

obtained from system responses to step inputs. There is some scatter in the experi-

mental data but the agreement is within about 30% for both of the proportional gain

cases considered. Note that for the damping, the coefficient is a function of both

the proportional and rate gains due to the control circuit used. It may also be

noted that both the stiffness and damping coefficients are reasonably linear over the

ranges measured.
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Mode Case

Table 1

Critical Speeds

Measured

(rpm)

Calculated

(rpm)

Error

(_)

Controller

Mode

No Controller

With Controller

2845

3610

2766

3556

Magnetic

Bearing

Support
Mode

Case I/Vertical

Case I/Horizontal

Case 2/Ver tical

Case 2/Horizontal

1860

23 20

2720

2260

1803

26 50

2672

2625

-3%

+14%

-2%

+16%
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PERFORMANCE OF AN ELECTROMAGNETIC BEARING FOR THE VIBRATION

CONTROL OF A SUPERCRITICAL SHAFT*

C.D. Bradfleld, J.B. Roberts, and R. Karunendlran

University of Sussex

Falmer, Brighton, England

The flexural vibrations of a rotating shaft, running through one or

more critical speeds, can be reduced to an acceptably low level by

applying suitable control forces at an intermediate span position. If

electromagnets are used to produce the control forces then it is

possible to implement a wide variety of control strategies.

A test rig is described which includes a microprocessor-based

controller, in which such strategies can be realised in terms of

software-based algorithms. The electromagnet configuration and the

method of stabilising the electromagnet force-gap characteristic are

discussed. The bounds on the performance of the system are defined. A

simple control algorithm is outlined, where the control forces are

proportional to the measured displacement and velocity at a single

point on the shaft span; in this case the electromagnet behaves in a

similar manner to that of a parallel combination of a linear spring and

damper. Experimental and predicted performance of the system are

compared, for this type of control, where various programmable rates of

damping are applied.

INTRODUCTION

In many engineering applications it is desirable to control the

amplitude of transverse vibrations of flexible transmission shafts,

especially if the design speed range encompasses one or more critical

speeds. It can be demonstrated theoretically (e.g. see Refs.l to 3)

that it is possible to satisfactorily control the flexural vibrations

of a rotating shaft by applying control forces at a single intermediate

span position. If the position of the control force application is

suitably chosen then satisfactory reductions in the amplitude of

vibration may be achieved over a speed range covering several critical

speeds.

Two control devices, which are appropriate for this application,

have been investigated in recent years - the squeeze-film bearing (e.g.

see Refs. 4 and 5) and the electromagnetic bearing. The former has

proved a relatively robust and reliable means of achieving vibration

control. However, despite considerable efforts, it has proved

difficult to predict its dynamic performance quantitatively, with any

degree of accuracy.

* This work was supported by the Science and Engineering Research

Council. The authors gratefully acknowledge this source of funding.
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Electromagnetic bearings offer an attractive alternative approach

and interest in such devices, as a means of active

vibration control, has grown rapidly during the last few years [6-11].

The considerable advantage of such bearings is that it is possible to

implement a wide variety of control strategies, particularly if they

are operated under computer control. Moreover, it is possible, at

least in principle, to predict their dynamic characteristics fairly

accurately. This implies that it should be possible to design an

electromagnetic control device which has a quantitatively predictable

performance when applied to any particular rotor-bearing system.

Various types of electromagnetic control device have been described

in the literature [6-11]. One of the simplest, and most promising, of

such devices comprises six pole pieces surrounding the shaft, with

three alternate energised poles. With this arrangement, combined with

microprocessor control, it has been demonstrated experimentally that it

is possible to control a rotating shaft satisfactorily, when it passes

through critical speeds [II]. However, a quantitative comparison

between experimental and predicted performance of the combined

rotor-electromagnet system was not attempted in this earlier work.

In the present paper the rationale behind the adoption of this

particular electromagnet configuration is initially discussed. This is

followed by a description of the power electronics, and

microprocessor-based control system used to drive the electromagnets,

with emphasis on the factors which limit the performance of the system.

The implementation of a simple control strategy, in which the

electromagnet behaves approximately as a linear spring-plus-damper, is

outlined and it demonstrated theoretically that, with this form of

control, the complete rotor-electromagnet system can become unstable,

under certain circumstances. A qualitative prediction of the influence

of various factors on stability is obtained from this theory, which is

fully in accord with experimental observations.

The paper concludes with some experimental results obtained from a

test rig, in which the rotor is a simple shaft, of uniform

cross-section, and the only source of excitation, when rotating, is the

initial bend. For pure damping control, the results of free-decay

tests are shown, which clearly demonstrate the effect of increasing the

programmable rate of damping. A parametric identification technique,

applied to the free-decay data, results in a direct calibration of the

relevant damping coefficient. Results obtained from the test rig, when

the shaft is rotating under damping control, are then presented and

compared with corresponding theoretical predictions, for a speed range

covering the first critical speed of the shaft.

EQUIPMENT

Rotor-Bearing System

The experimental rotor configuration is shown in Fig.l and

comprises a 25 mm diameter shaft of austenitic stainless steel, mounted

in self-aligning ball races, giving a length between bearings of 1500

mm. The shaft is driven through a light flexible coupling, and can be

driven at up to 6000 r.p.m, from a variable speed drive.
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In this configuration, the first two critical speeds are 1260 and

5480 r.p.m. Additional masses may be added to bring the third critical

speed within the design maximum speed. The active element used to

control shaft motions, the electromagnet assembly, is located at the

one-slxth span point, and can thus apply forces which are effective in

controlling motions in at least the first three modes.

The shaft position is measured using capacitative transducers,

which operate reliably in the magnetic fields encountered. These

transducers operate satisfactorily as they are not subjected to oil

contamination. Commercial equipment is used to energise the transducers

and to demodulate their outputs. Transducers are mounted horizontally

and vertically, and measure these components of shaft motion at two

points, located between the magnet and the centre of the rotor.

Electromagnet Configuration

The active control element is shown in Fig.2 and comprises six pole

pieces surrounding the shaft, with three alternate poles wound, and the

three interleaved poles unenergised. The flux paths pass through the

poles and their backing ring, through the small airgaps, and through a

cylindrical core 50.8 mm diameter mounted on the shaft. This

configuration gives radial fluxpaths in the central core and simplifies

its construction, thin laminations being used to limit eddy current

losses.

Design of the electromagnets is dominated by the need to linearise

forces as the airgaps change. The attractive force F across an airgap

is related to flux density B by the square-law relation F = BZa/2_o,

where a is the poleface area and _o the permeability of free space (=

4w x 10 -7 H/m). The flux density is proportional to current I, but

inversely proportional to the total air-gap g. Neglecting leakage flux

and working below saturation, B = _oNI/g where N is the number of

turns. An electromagnet thus produces forces which vary as i/g 2. At

small gaps the rotor plus electromagnet will be unstable. To stabilise

and linearise this behaviour, Salm and Schweitzer [9] have described an

electromagnetic actuator in which each electromagnet coil contains two

windings, carrying a bias current Io, and a control current I. A pair

of electromagnets on opposite sides of the core are connected such that

flux on one electro-magnet is proportional to I o + I, while the

opposite electromagnet produces flux proportional to I o - I. This

system can be shown to linearise first order response only, with

respect to both I and g. The system has a high steady power

dissipation due to the bias currents Io, and requires a unidirectional

power amplifier (for bias current) and one bidirectional power

amplifier per pair of electromagnets.

We have chosen instead to follow previous work on electromagnetic

suspensions at Sussex [12], and control flux densities directly.

Hall-effect plates are installed in the airgap at the centre of each

energised pole to measure flux densities here. The electromagnets and

their power amplifiers lie within an inner feedback loop, where the

measured flux is compared with the drive signal, which is thus a flux

demand. The non-linearity with respect to electromagnet gap is thereby
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removed. The Hall plates are 0.35 mm thick. They, and their mechanical

protection, require a small increase in airgap.

The control system has been implemented under microprocessor

control in order to develop sophisticated control strategies. At this

point it is only necessary to note that complex drive waveforms can be

readily generated. It is no longer necessary to obtain the linear

characteristic which differential driving of a pair of opposed

electromagnets can give. The minimum provision of electromagnets and

their drive amplifiers can be re-examined.

The requirement is to control two degrees of freedom of shaft

motion of the electromagnet location, using devices which can apply

attractive forces only. For any n degrees of freedom considered

together, the minimum number of electromagnets will be n+l, if a

suitable geometry is chosen. The one additional electromagnet arises

from the restriction to attractive forces. It can be best visualised

by considering the suspension to require one indeterminacy, allowing

(though not requiring) all magnets to be preloaded, with a set of

self-equilibrating forces. Having provided this system any direction

of resultant force can be generated by suitable matched changes in the

magnet forces. Operation is, however, not restricted to this fully

biased mode, and minimum power dissipation is obtained if bias is

reduced until the first magnet drops to zero force.

It may be noted that this principle differs slightly from

electromagnetic suspensions, in which the weight of an object may often

be used to preload the system of electromagnets, which can then be

reduced in number by one. Without this modification it is indeed

possible to identify a system of 7 electromagnets which can apply all 6

independent force components to a platform.

If the two translational degrees of freedom of the shaft at the

electromagnet location are considered separately, then two attractive

forces are required to control each. The total requirement is four

electromagnets and drive amplifiers, and there is little economy over

previous systems. However, taking the two degrees of freedom together,

three electromagnets, each with its drive amplifer, are sufficient.

This offers considerable economies in power amplifiers, and

simplifications in the packing of coils and poles in the electromagnet

assembly. This configuration, shown in Fig.2, is used in the present

work. Unwound poles are placed between each of the wound poles with a

single backing ring. The layout ensures that only unidirectional

current drive to each coil is required; this considerably simplifies

the power amplifier design.

Power Electronics and Control

Each electromagnet coil is energised by a power amplifier of the

pulse-width modulation (p.w.m.) type. The connections of the coll to

the d.c. power supply of voltage Vs are switched to alternately drive
increases and decreases in the coil current.

The switching frequency is high compared with the coll time

constant L/R, and is normally above the audible frequency range. The
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input voltage to the amplifier sets the mark/space ratio of the

switching signal. The on-time t I as a fraction of the total period 7

is related to the current I, averaged over the switching cycle by:

tllT= M + (ll2Vs)((LdI/dt) + 2E + IR) (i)

where E is the back-emf generated by the core velocity.

The block diagram of the control system is shown in Fig.3. The

outputs of the equipment energising the displacement transducers are

used directly as the displacement signals. They are also bandwidth

limited and passed through analogue differentiators to give the

velocity signals. The signals pass through sample and hold gates, and

can be switched onto two 12-bit successive approximation

analogue-to-dlgital converters. These are interfaced to the Z8002

microprocessor over the Z-bus. Outputs from the microprocessor are

provided through 12-bit digital-to-analogue converters which drive the

flux error amplifiers. Timing and shaft-speed measurement are driven

through counter-timers.

As a prototype system, the Z8002 is mounted in a development module

containing the monitor and a large area of random-access memory (RAM).

The system is commanded from a terminal, and program editing, storage

and assembly is carried out on a host system running under CP/M.

Machine code programs are downloaded into the development module's RAM

in order to operate the system. A production version would omit

terminal and host system, and store the fixed program in ROM on the

microprocessor system, with automatic initialisation and execution on

reset as power is first applied.

The ZSO00 series processor was selected for the project, as the

only 16 bit processor available in the U.K. at the time the project
started.

Software

The microprocessor software was developed using the ZSO00 assembly

language, and is required to operate at two levels. At the low level,

for a high computation speed, a loop is executed, initiated by a timer

which sets the 550 _s sampling rate. The sample-and-hold gates,

multiplexors and ADC's are controlled to measure the shaft position and

velocity in x- and y-directions, and these values are stored. The

control forces are computed, and resolved onto the magnet directions.

As the outputs are used as a flux demand, it is necessary to perform a

square root extraction: this is performed as a direct look-up in a 4K

word table. Finally the control signals are output through the DAC's.

At a higher, and slower, level the constants in the control law may

be altered, in response to measurements of shaft speed or to observed

performance. This level is performed in the processor's normal mode,

and the low level tasks described above, and speed measurement, are

initiated by vectored interrupts, which enter the processor's system

mode and initiate these tasks as the appropriate interrupt service
routines.
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The results described below were obtained using an earlier
development version of the software in which the higher software level
is not implemented.

CHARACTERISTICS OF THE ELECTROMAGNET SYSTEM

Force Resolution

The electromagnet system is normally required to generated rotating

forces which are synchronous with the rotor. In this mode, the

required forces in x- and y-directions are computed as F x and Fy, and

the required forces in the three electromagnets are obtained as shown

in Fig.4. For any direction of the resultant of Fx and Fy, one magnet
can generate forces opposing the resultant, and it is reduced to the

set minimum force F o. The axes of the two magnets which are driven

include the dlrection of the resultant.

The resolution is simple to program, and a pseudo-code for this is

given in Appendix A. This gives the derivation of the required magnet

forces F I, F 2, F 3 in terms of the computed forces Fx,Fy. Addition of a

minimum force F o is included within the table look-up, which will be

performed after execution of this code, to obtain the drive voltages to

the power amplifiers.

Low Frequency Performance

At low frequencies, the capacity of the electromagnet system is

limited by core saturation, and by coil dissipation. The shaft speeds

are high compared with the coll thermal time constants. Mean power

dissipation, rather than maximum instantaneous dissipation, will

produce this limit. At constant air-gap, this mean dissipation is

proportional to the area under the force waveform, but in general the

currents are modulated by airgap variations.

High Frequency Performance

The p.w.m, amplifier open loop conductance was shown to vary with

the signal frequency. The e.m.f. E is generally small, and the gain

shows a first-order response

I 2Vs/R

tl/T 1 + J_/_o
(2)

where the corner frequency Wo is the inverse of the coil time constant

L/R. This is the longest and dominant time constant in the system, and

imposes severe performance limitations. The flux feedback loop

operates to reduce gain but also increases the corner frequency,

multiplying it by the loop gain. At the closed-loop corner frequency,

substantial phase errors occur, as the amplifier contributes a 45 °

phase lag. Small contributions may be introduced elsewhere in the

loop, as substantial filtering must be introduced at the p.w.m.

switching frequency.
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A further limitation arises when slew-rate limiting occurs. At low

currents dI/dt cannot exceed • Vs/L. This imposes a limiting linear

rise or fall of current with time, and hence a parabolic limiting

force-time curve. The force-time waveform for one magnet is shown in

Fig.5.

A limiting slew-rate condition is shown by the broken line which at

zero force is horizontal. For a zero bias level, i.e. F o = O, it will
be seen that the initial rise in the force waveform can never be

attained, and distortion will occur. A small bias level is of great

benefit in allowing a useful rate-of-rise of current to be attained at

point B. This also avoids operation conditions for the p.w.m.

amplifiers at which commutation times become significant.

In operation, the choice lies between accepting a small distortion

when a small bias level is used, and eliminating distortion but

substantially increasing dissipation by adopting a high bias level.

The former option is preferred at present.

The operating area of the power amplifier-electromagnet combination

is shown in Fig.6. Further investigation shows that only the

dissipation limit alters as the core moves within the magnet poles.

The magnet used in the present work is designed to produce 400 N at

up to 100 Hz, using a 320 volt supply, within acceptable distortion
limits.

CONTROL STRATEGY

In the present work the control strategy is to provide control

forces which depend on the measured motion of the shaft, at one span

position only. Since the shaft-bearing system under consideration is

symmetrical, one need only describe the strategy for a single plane of
vibration.

Suppose that the transverse displacement of the shaft is measured

at a distance, Xm, from one end, and that the control force is applied

at a distance, Xc, from the same end. Let Fc(t) denote the time

varying control force, and Ym be the measured displacement.

One of the simplest approaches, and that adopted here, is to

generate a control force which is a linear combination of a

displacement-proportional component and a velocity-proportional

component, i.e.

F c = -ky m - CYm (3)

where k is a "spring" constant and c is a "damping" constant. When x m

and x c are equal the constants k and c have their usual meaning. In

the present application the shaft vibrates synchronously - i.e. Ym (and

Ym) fluctuate harmonically, with a frequency equal to the shaft's

rotational speed, _. It follows, from equation (3) that Fc(t ) is also
harmonic.
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If k and c are allowed to vary with w than one can achieve

"optimum" control, over any required speed range [3]. However, in the

present investigation attention is focussed on the situation where both

k and c are constant, independent of speed. As theoretical work has

demonstrated, if k and c are chosen carefully, this type of control can

successfully limit vibration amplitudes over a speed range covering

several critical speeds [2].

THEORETICAL TREATMENT

Modelling the Shaft-Bearing System

To obtain theoretlcal predictions of the shaft vibrational

behaviour, when controlled by a force, as given by equation (3), a

computer program was written, based on the stiffness method. The shaft

was discretlsed into a number of lumped masses, with the elastic

segments between these masses being taken to be massless. The bearings

were modelled as simple, pinned supports. The program could cater for

any form of excitation, arising from the initial bend of the shaft, and
the distribution of mass unbalance.

The equations of motion were formulated in the standard form

°o

my_+ cz + KX = Q(t) (4)

where _, _ and _ are the mass, damping and stifness matrices,

respectively, _ is a column of displacements and _(t) is a column of
excitation components. A numerical solution of equation (4) enabled

the vibration amplitudes of the discrete masses, at any rotational

speed, to be calculated. Moreover, the stability of the system could

be assessed, through an eigenvalue analysis of the homogeneous form of

equation (4) (Q(t) = 0).

Approximate Analysis for Damping Control

If attention is focussed on a speed range covering the first

critical speed only, and damping control alone is considered, then it

is possible to obtain a simple analytical expression for the vibration

response. This expression is likely to be fairly accurate in the case

of the present shaft, since its natural frequencies are well separated.

Considering initially, for simplicity, the case of free vibration

(i.e. no rotation) one can approximate vibration in the first mode by

assuming that it is of the same form as undamped vibration - i.e.,

_x
y(x,t) = Y(t) sin (-T) (5)

where y, as before denotes transverse displacement, Y(t) is a function

of time only and Q is the total shaft length. A single degree of

freedom equation of motion can then be formulated using the energy

relationship
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Rate of change of total energy = - Rate of energy dissipation

(potential + kinetic) due to damping

This leads (see Appendix B) to the equation

(6)

tt I

y + BY + y = 0 (7)

where here differentiation is with respect to the non-dimensional time

T = wit (8)

and e I is the first natural frequency of the shaft. B, a

non-dimensional damping coefficient is related to c (see equation (3))

through the equation

_x _x

B - M_I2C sin (--_) sin (--_) (9)

where M is the total mass of the shaft. In the experiments to be

discussed later Xm/9 = 1/3 and Xc/9 = 1/6; hence, in this particular

case,

#3c

B - 2M_1 (10)

For the case of a rotating shaft, with initial bend excitation

only, equation (7) can be generalised by incorporating a non-zero

right-hand side. If the initial bend is assumed to approximate to the

shape of a half-sine wave then, at any shaft location, x, one finds,

approximately, that

II I

Y + BY + Y = b cos _t (II)

where b is the initial bend at that location. Solving equation (ii)

for synchronous vibration shows that the amplitude of vibration, A, at

location x, is given by

b (l__Z) 2+Bz_2
(12)

where

n = w/e I (13)

is a non-dimensional frequency.

Comparisons between predictions from equation (12), and the more

accurate numerical approach described earlier, generally showed good

agreement. Fig.? shows a typical comparison for the case where c = 272
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Ns/m. Here the amplitude of vibration, in one plane, at the damper

position is plotted against rotational speed.

Stability Considerations

The ideal control law expressed by equation (3) can only be

realised approximately, in practice. Due to the hardware limitations

described earlier, the bandwidth of the electromagnetic system (EMS) is

of order i00 Hz; at frequencies in excess of this the phase shifts and

gain variations associated with the EMS become very significant and

must be taken into account in any assessment of the overall stability

of the total shaft-plus-EMS.

The total system may be regarded as two sub-systems - the

shaft-bearing system (SBS) and the electromagnetic system (EMS). These

sub-systems are coupled through the following two variables:

(1) the force Fc(t), at position x c

(ii) the shaft displacement, Ym(t) at position x m.

The appropriate block diagram representation of the total system is

shown in Fig.8. For a stability assessment it is sufficient to

consider the case of no rotation - i.e., no excitation, and motion in

one plane only.

For the SBS, the Laplace transform of Ym(t), denoted Ym(s), is

related to the Laplace transform of Fc(t), denoted Fc(s), though the
linear relationship

Fc(s ) = M(s)Ym(s ) (14)

Here M(s) is the "mechanical" transfer function for the shaft-bearing

system. Similarly, for the EMS one can write (assuming that this

sub-system behaves, at least approximately, in a linear fashion)

Fc(s ) = E(s)Ym(s ) (15)

where E(s) is the "electrical" transfer function.

between equations (14) and (15) one finds that
Eliminating Fc(s )

D(s)Ym(S) = 0 (16)
where

D(s) = M(s) + E(s) (17)
and

E(s) = -E(s) (18)

The total systems characteristic equation is thus

D(s) = 0 (19)

For stability all the roots of equation (18) must lie on the left

hand side of the complex s-plane. The position of these roots can be

determined numerically if both M(s) and E(s) can be expressed in

algebraic form. Alternatively, a graphical procedure can be used.
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In the present paper the graphical technique known as the Leonhard

Locus (e.g. see Ref.13) will be used to examine the factors which

influence total system stability. This involves a consideration of the

mapping between the s-plane and the complex D-plane, where D is defined

by equation (17). Firstly, it may be observed that the roots of the

characteristic equation all map to the origin of the D-plane. Now if a

point travels along the imaginary axis of the s-plane - i.e., s = jw,

with w increasing from w = 0 - it will map to a curved locus, D(jw), in

the D plane, known as the Leonhard Locus. In the case of a stable

system all the roots in the s-plane lie to the left-hand side of the

locus s = Jw; this implies that the mapped, Leonhard locus, in the

D-plane will be such that the origin will always lie on the left hand

side, to an "observer" travelling along the locus in the direction of

increasing frequency, w. For a system at the threshold of stability

the Leonhard locus should pass exactly through the origin of the

D-plane.

In the present case the Leonhard locii, M(jw) and E(jw), may be

evaluated separately and then combined, through a simple addition.

According to equation (17) the combined Leonhard locus is given by

D(Jw) = M(J_) + E(Jw) (20)

Now M(jw) and E(jw) are directly related to the frequency response

functions for the mechanical and electrical sub-systems, respectively.

Thus the stability of the total system can be deduced directly from the

characteristics (amplitude and phase variation with frequency) of these

two functions.

For a plnned-pinned uniform shaft the appropriate frequency

response function, M(jw), can be found by standard methods. If it is

assumed that the introduction of structural damping does not lead to

coupling between the modes then a modal expansion for the inverse of

M(j_) is as follows:

:
-n 2 +(jw)2+2(jW)CnWn ]M(jw) =i [w n

(21)

where

2 2 EI
w = n , -- (22)
n 4

Q

is the nth natural frequency, E is Young's modulus for the shaft

material, I = nd4/64, where d is the shaft diameter, and m is the mass

per unit length of the shaft. _n (n = 1,2...) are the modal damping

factors and the coefficients an are given by

n_x n_x

- 2 sin (--_) sin (--_) (23)_n m_
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Fig. 9 indicates the general behaviour of the Leonhard locus,

M(Jw), for the first three modes. The arrows indicate the direction of

increasing frequency. It is noted that there is one "branch" of the

locus, corresponding to each mode; the n th branch intersects the

imaginary axis of the M(jw) plane at w - w n. The height of such an

intersection is, to a good approximation, directly proportional to the

structural damping of the corresponding mode. In general the

structural damping will become more effective as the mode number, n,

increases; this is one reason why the branches of M(jw) become

progressively higher, as Fig.9(a) indicates. For an imaginary observer

moving along any particular branch the origin always appears to the

left hand side - it follows that the mechanical sub-system, considered

in isolation, is always stable.

For the "ideal" control law given by equation (3) the corresponding

Leonhard locus E(jw) is easily found to be

_(jw) = k + (jw)c (24)

This locus is sketched in Fig. 9(b). It is evident that a combination

of M(jw) and E(j_) will lead to a total system locus, D(Jw) which also

satisfies the graphical stability criterion.

The main interest here concerns the effect of the electromagnet

system's non-ideal characteristic on the total system stability. Figs.

iO(a) and (b) show, qualitatively, the difference between the ideal

pure spring, and the ideal pure damper, E(jw) loci , respectively, and

the corresponding locl _ of the kind obtained in practice. As w

increases, the phase shifts, and gain reduction, becomes progressively

more significant, resulting in curved loci.

A combination of M(jw) with the actual E(Jw) can lead to a Leonhard

locus which indicates instability. This is illustrated in Fig.ll. If a

particular branc h of the M(Jw) is "pulled" below the origin, through

the addition of E(Jw), then total system instability is indicated. The

threshold of instability occurs, for a particular mode, when the

relevant branch of the combined locus just passes through the origin.

Let s denote distance travelled along a Leonhard locus. Then it

may be observed that ds/dw for M(jw), in the vicinity of a natural

frequency, is normally much greater than the corresponding rate of

change for E(jw). Also, for w = w n, M(jw n) is, to a close

approximation, entirely imaginary, with a value given by (from equation

(21))

2
2_nW n

M(JWn) = j. _ (25)
n

This result follows from the fact that the contribution to M(Jwn) from
the n th mode is dominant. If the combination of M(jw) and E(Jw) is to

result in a locus which passes above the origin then one requires,

approximately, that
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2
2&nWn + Im(E(j_n)} > 0 (26)

n

This condition gives a criterion for "stability in the n th node".

Total stability obviously requires that inequality (26) be satisfied

for all n.

Several conclusions can be drawn from this stability criterion.

Firstly, considering the case of pure stifness control, it is evident

that, since _n are generally very small quantities (_n << I), very

small phase shifts can result in instability (see Fig.lO(b)). Thus

this method of control is very prone to instability problems.

In considering the other extreme case of pure damping control it is

convenient to represent E(jw) as

E(jw) = jwc EAe-3 _ (27)

Evidently, for ideal damping E A = 1, _ = 0 and, from inequality (26),

stability is assumed, for all n. However, if 90 ° < • < 27 °0 , at a

particular natural frequency, Wn, then the corresponding mode can
become unstable. The critical value of damping coefficient, c* , at

which the n th mode is marginally stable is given by (for 90 ° < • <

270 ° )

* 2_nWn (28)

c = EA_nlCOS _I

Again, since _n are usually very small compared with unity, c can

be very low. It follows from equation (28) that improvements in the

stable range of damping coefficient can be achieved by

(i) reducing the absolute value of cos

(ii) reducing the non-dimensional gain, E A

(iii) reducing the value of _n, by repositioning the measuring

location, x m.

It is noted that, if only one mode of vibration is unstable, this

instability can be removed, theoretically, by locating the measuring

point at a node of that particular mode. This has the effect of making

_n = O, since the n th mode has the mode shape sin (n_x/9) (see equation

(23)).

COMPARISON BETWEEN THEORY AND EXPERIMENT

Results will now be presented which relate to the case of nominally

pure damping (i.e. k = 0 in equation (3)).

Stability Observations

With x c = 9/6, and xm close to x c, experiments revealed that the

shaft became unstable when the damping coefficient exceeded a small,

non-zero level. The self-excitation was in the form of vibration in

the third mode.
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Referring to equation (28) one can conclude that, for the third

mode, the value of c* is very low. This is mainly due to the value of
which is in excess of 90 ° It was found

at w3 (~ 180 Hz)_
experimentally that c could be increased by moving the measurement

position closer to a node position of the third mode (x m = _/3). This

observation is in qualitative agreement with equation (28). It was
also found experimentally that c could be increased by reducing the

value of _ at w 3 , through modifications to the electronics and

software. This again is in accord with equation (28).

To enable results to be obtained over a wide range of damping

coefficient (c) values, the measuring point was located at a third mode

node - i.e. at x m = £/3. The total system was then found to be stable

for c values up to about 700 Ns/m.

Free Decay Tests

Experimental estimates of the damping coefficient B, in equation

(7), were obtained by performing free-decay tests on the non-rotating

shaft. The shaft was pulled at its centre, through a small

displacement, and then released. The subsequent transient decay was

then recorded digitally, at equi-spaced time intervals, for various

levels of damping coefficient.

Figs. 12(a) and (b) show typical free-decay experimental results,

including the case where the electromagnetic damping is zero (i.e.

structural damping only is present). The results were obtained for

various programmable rates of damping by varying the rate constants (in

arbitrary units) in the control program. To reduce the effects of

noise, each of the free-decay results was obtained by averaging ten

separate, individual results, obtained under identical conditions.

Each averaged free-decay result was processed by a parametric

identification procedure, which fitted the experimental data to the

solution of the following equation of motion, in a least-square sense

[14,15];

im I

Y + BY + 7Y = 0 (29)

Figs.12 show comparisons between the solutions to equation (29) and the

experimental data, where the theory is computed from the best fit

values of _ and 7. In every case a very good degree of fit is

achieved. Table i summarises the results obtained for B and Z.

It is noted that F is close to unity, as one would expect, for pure

damping. Moreover, B is, to a very close approximation, proportional

to the programmable damping rate, as Fig.13 shows. The results also

show that the contribution of structural damping can be neglected.
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Programmable damping

rate

(arbitrary units)

Table 1

estimated parameters

B Y

0

199

272

397

496

595

744

0 013

0 123

0 178

0 279

0 357

0 407

0 501

1.00

0.08

1.01

1.02

1.08

1.12

1.08

It can be concluded, from the analysis of these tests, that the

electromagnetic control system performs as expected, at least for

frequencies in the vicinity of the shafts first natural frequency (~ 21

Hz).

Rotating Shaft Results

For rotational speeds in the range 200 to 2500 r.p.m., the shaft's

amplitude of vibration, in a single plane, was measured and plotted

against shaft speed. The measurement location was at x ~ 9/6; close to

the magnet position. Figs. 14 show some typical comparisons between

the experimental variations of vibration amplitude with rotational

speed, and corresponding theoretical predictions, for two levels of

damping. The theoretical predictions were obtained from the

lumped-mass computer program, with damping values deduced from the B

values found in the free-decay tests, using equation (i0) to convert

to the damping coefficient c. The initial bend of the shaft was

measured experimentally and used as input data for the program.

Generally the degree of agreement between theory and experiment is very

satisfactory, and it is evident that the vibration amplitude at the

first critical speed can be controlled very satisfactorily by the

electromagnet system. It is interesting to note that there is some

variation in the experimental results, at each level of damping. Thus,

the variation of amplitude with speed as the speed increased from zero

to its maximum value (labelled 'before'), was found to differ somewhat

from the corresponding variation as the speed decreased to zero

(labelled 'after'). Further traverses in speed were found to produce

further variations. This phenomenon is attributed to variations in the

initial bend of the shaft, as the results of stress cycling. This

effect has been observed in earlier investigations (e.g. see Ref.2).

Measurements of the initial bend confirmed that it changed, as the

results of a sequence of rotational tests. The initial bend was found

to return to its original shape over a time period of order one day.

A direct estimate of the non-dimensional damping parameter _,

produced by the electromagnet system, can be found by using the simple

approximate result given by equation (12). In particular, at _ = 1 one

has, from this equation,

A/b = I/B (30)
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Thus, taking the average of the experimental results, at each damping

level, and dividing the amplitude of vibration at w = O(b) by the

amplitude of vibration at w = el, one obtains a simple estimate of B.

In Fig.15 the estimates of B, obtained in this way, are plotted against

the corresponding estimates obtained from the analysis of the transient

data. Each point here relates to one programmable rate of damping.

The points lie very close to a straight line, at 45 ° to the horizontal,

showing a good degree of correlation. There is a small offset, which

indicates that, in the case of rotation, there is a small additional

contribution to the total damping. This contribution probably

originates in the bearings. When allowance is made for this effect one

can conclude, from Fig.15, that the test results obtained with the

rotating shaft are in complete accord with the transient test results.

CONCLUSIONS

A microprocessor based electromagnet system for controlling the

vibration of rotating flexible shafts has been described, and bounds on

the performance of the system have been defined. Theoretical arguments

have shown that, as a result of limitations to the performance of the

electromagnet system, the complete shaft-plus-electromagnet system can

become unstable under certain conditions. A simple stability criterion

has been established which reveals the influence of various factors on

stability. For the case where the electromagnet is programmed to

behave as a simple damper, good agreement between experimental

observations and theoretical predictions has been achieved, over a

rotational speed range encompassing the shaft's first critical speed.

APPENDIX A

ALGORITHM FOR FORCE COMPONENT EVALUATION

fx := (required forces)

fy := ( )

fx' := fx//3

if fx'>O then

if fx'>fy then

call mSoff

else

call mloff

else

if -fx'>fy then

call m2off

else

call mloff

endif

procedure mloff

f2 := fx' + fy

f3 :=-fx' + fy
fl := 0

endproc
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procedure m2off

fl := -fx' - fy

f2 := 0

f3 := -2_fx '

endproc

procedure m3off

fl := fx' - fy
f2 := 2_fx '

f3 := 0

endproc

APPENDIX B

APPROXIMATE EQUATION FOR FIRST MODE FREE VIBRATION WITH DAMPING

For a uniform shaft with pinned supports, free undamped vibration
takes the form

y(x,t) = Y(t) sin (_x/9) (AI)

where Y(t) is a function of time only. A good approximation, when

damping is applied through the electromagnets, is to assume that this

basic form of vibration is still applicable. This approximation

clearly will be most accurate when the damping is light.

The total kinetic energy of the vibrating shaft is then given by

9

KE = my2dx (A2)

o

where m is the mass per unit length. Combining equations (AI) and (A2)
one finds that

1
KE = _ MY2- (A3)

where M = mg. The total potential energy, in the form of elastic

strain energy in the shaft, can also be easily calculated; thus

PE EI ;_(d2y= _--- d_x 2) 2dx

and, from equations (AI) and (A4),

(A4)

EI n4Y 2
PE - (A5)

3
49

Finally, the rate of energy dissipation, R, is given simply by

R = Damper force x velocity at damper

= CYmYc (A6)

where Yc is the velocity at the electromagnet position and Ym is the

velocity at the measuring point. From equations (AI) and (A6) one has
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TrX TfX

R = cy2sin(_) sin (--_) (AT)

Now, following the energy relationship expressed by equation (6),

one has

d
_[_(PE + KE) = -R (A8)

Hence, from equations (A3), (AS) and (AT), one obtains a single degree

of freedom equation of motion, as follows:

_x wx 4

M Y + _-- sin ( ) sin( ) + El n
293

On introducing thge non-dimensional time, T, defined by equation (8),

and using the fact that y, at any value of x, is simply proportional to

Y, one obtains equations (7) and (9). One also finds that

4
2 . E1

(AI0)_i = 3 M
9

This is, of course, the "exact" result for the undamped natural

frequency of a plnned-pinned shaft, since equation (i) is the

corresponding exact mode shape for this case.
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A MAGNETIC BEARING BASED ON EDDY-CURRENT REPULSION

J.L. NlkolaJsen

Texas A&M University

College Station, Texas 77843

This paper describes a new type of electromagnetic bearing, called the

'Eddy-Current Bearing,' which works by repulsion between fixed AC-electromagnets

and a conducting rotor. The following advantages are expected: inherent

stability, higher load carrying capacity than DC-electromagnetic bearings,

simultaneous radial, angular and thrust support, motoring and generating

capability, and backup mode of operation in case of primary power failure. A
prototype is under construction.

INTRODUCT ION

Levitation of conducting material by AC-electromagnets, as shown in figure 1,
is a well-known phenomenon. The AC-current in the magnet sets up a constantly

changing magnetic field which induces eddy-currents in the conducting plate. The

direction of rotation of the eddy-currents is such that the resulting secondary

magnetic field will oppose the primary field. E.g., whenever a north pole is

being generated in the primary field, a north pole will also be generated in the

secondary field and steady repulsion will take place between the magnet and the

plate. This is the basic operating principle of the Eddy-Current bearing outlined
in this paper.

BACKGROUND

AC-electromagnetic levitation of conducting material has inspired many
inventions throughout this century. Some early outstanding examples are: the

Foucault Railroad of 1912 (ref. 1), Anschutz-Kaempfe's gyro of 1923 (ref. 2), and

Orkress' levitation of molten metal without a crucible in 1952 (ref. 3).

In the 1960's, the principle was applied in contactless suspension of

high-speed ground transportation vehicles (ref. 4). Development took place in

competition primarily with controlled DC-electromagnetic suspensions and cryogenic

type suspensions using superconducting magnets. An excellent survey of these and
other types of magnetic suspensions can be found in references 5 and 6.

The potential of the AC-electromagnetic type suspension was fully realized in
1974 when Eastham and Laithwaite presented their so-called 'Magnetic River'

suspension (ref. 7). It consists of a single linear induction motor which has

been adapted to provide not only stable levitation but also propulsion and

guidance of itself along a conducting rail without any feedback control (fig. 2).
There is even a technique available by which the 'Magnetic River' can be made to
stop safely on the rail in case of power failure (ref. 8).
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By their very nature, the competing suspensions have no capability for

propulsion or emergency stopping. However, they remain strong contenders due to

some problems with the Magnetic River which are still unresolved. The primary

problem is a low power factor which appears to necessitate forced cooling of the

magnets and use of heavy power-factor-correcting capacitors in order to achieve

large levitation gaps (ref. 9). Also, the inherent damping in the system is

apparently very light and some form of feedback control may be needed to improve
it (ref. 10). Finally, analytical predictions of the performance are exceedingly

difficult to make due to the complex three-dimensional interactions which take

place between the primary and secondary electromagnetic fields. Thus,

improvements have had to be made largely by trial-and-error experimentation based
on the intuition of a few specialized engineers (ref. 7). This work has been made

even more difficult by the fact that apparently minor changes in geometry have

been found to produce large unexpected changes in performance. Relief finally

appears to be in sight with recent developments of finite element methods intended
specifically for design studies of the Magnetic River (refs. 10, 11 and 12).

THE EDDY-CURRENT BEARING

The Eddy-Current bearing, as shown in figure 3, is made simply by bending the

Magnetic River of figure 2 into a circular shape. An extensive literature survey
has indicated that this has not previously been done although the possibility of

doing so has previously been mentioned in reference 13 during the discussion of

another e-l-e_tromagneticbearing.

The many advantages of the Magnetic River suspension, as mentioned

previously, are expected to translate into similar advantages of the Eddy-Current

Bearing as discussed in the following sections. Also, the problem with the low

power-factor in the Magnetic River is expected to diminish in the Eddy-Current

bearing because the airgap is much smaller. The inherent system damping will

probably remain low in the Eddy-Current bearing, but this could be compensated by
use of a passive eddy-current damper (ref. 14). Finally, the recent finite

element methods for the Magnetic River are expected to be applicable to design

studies of the Eddy-Current bearing also. A brief discussion of each of the

expected advantages of the Eddy-Current bearing is given in the following

sections.

Support and Motoring Capabilities

The Eddy-Current Bearing is expected to provide stable support in both the

radial, angular, and axial directions simultaneously without any feedback control.

This follows from the capability of the Magnetic River to fully support and guide

itself along a rail without feedback control. Also, since the Magnetic River is
essentially a linear induction motor, it has both motoring, braking and

electricity generating capabilities (refs. 7, 8). The Eddy-Current Bearing is

also basically an induction motor which can be expected to have those same

capabil ities.
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Load CapactCy

The load carrying capacity per untt weight of both DC-electromagnetlc and
AC-electromagnetlc suspensions depend on size. De-suspensions are more efficient
the smaller they are while AC-suspensions are more efficient the larger they are
(ref. 15). For vehicle size suspensions, levitation gaps of over 10 inches are
possible wtth the Magnetic River whereas controlled DC-magnet suspensions are
limited to less than 1 inch atrgap (ref. 16). The effect on bearing derivatives
of these suspensions is not known. However, the large difference in levitation
gaps indicates a potential for improved load capacity of the Eddy-Current bearing
which warrants further Investigation.

Emergency Shutdown

The operating principle of the Eddy-Current bearing is such that it may be
possible to continue operation after a power failure long enough to ensure safe

shutdown without the need for catcher bearings. In principle, this can be done

by switching to battery operated DC-power direct to the magnets. The operating

pr incipl e would then change to so-cal Ied electrodynami c Ievi ration wi th the

eddy-currents induced by the motion of the rotor surface past a row of

DC-electromagnets. This principle is used in eddy-current brakes (ref. 17) and in

high-speed vehicles with superconducting magnet suspensions (ref. 18). Inherent

stability is retained and the airgap is so small that a good possibility exists

for generating sufficient lift with acceptable coil currents for a short time

interval. The eddy-current drag will automatically decelerate the rotor and,

eventually, metal contact will occur at low speed.

It is emphasized that no Eddy-Current Bearing yet exists and the capabilities

suggested here remain speculation. A prototype of the bearing is currently under
construction and a preliminary test program is scheduled for the summer of 1986 to

determine whether further investigation is justified. A patent disclosure has

been submitted and a patent search is underway•

CONCLUDING REMARKS

A new type of magnetic bearing, called the Eddy-Current Bearing, has been
introduced• It derives from a magnetic vehicle-suspension called the Magnetic

River. An extensive literature survey on the Magnetic River has suggested that

the Eddy-Current bearing will have a number of important advantages over existing

magnetic bearings• A research program is underway to determine the extent of

these advantages.
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ORIGINS OF HYDRODYNAMIC FORCES ON CENTRIFUGAL PUMP IMPELLERS

Douglas R. Adklns* and Christopher E. Brennen

California Institute of Technology
Pasadena, California 91125

Hydrodynamic interactions that occur between a centrifugal pump impeller

and a volute are experimentally and theoretically investigated. The theoretical

analysis considers the inability of the blades to perfectly guide the flow

through the impeller, and also includes a quasi-one dimensional treatment of the

flow in the volute. The disturbance at the impeller discharge and the resulting
forces are determined by the theoretical model. The model is then extended to

obtain the hydrodynamic force perturbations that are caused by the impeller

whirling eccentrically in the volute. Under many operating conditions, these

force perturbations were found to be destablizing. Comparisons are made between

the theoretical model and the experimental measurements of pressure distribu-

tions and radial forces on the impeller. The theoretical model yields fairly
accurate predictions of the radial forces caused by the flow through the

impeller. However, it was found that the pressure acting on the front shroud of

the impeller has a substantial effect on the destablizing hydrodynamic forces.

NOMENCLATURE

b

h

J

k

r,O

s

t

v

w

x,y,z

width of impeller discharge

total head (h* = 2h/pfl2R_)

impeller phase coefficient = cos(tan?in(R)) + j sin(tanyin(R))

polar coordinate system

length in tangential direction

time

relative velocity in impeller

width in volute

rectangular coordinate system

* Now at Sandia National Laboratories, Albuquerque, NM 87185
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A,rA,rrA

inrA,rlnrA

A° °

zj

Cij

D
P

F

F(t)

J..

Ij

Ko °

z3

M° °

Ij

Po

l

P
V

R

Rt

V

W.
1

¥

P

moments of volute cross-sectional area (defined in Equations 14a-e)

(i = x,y, j = x,y). components_ 9f generalized hydrodynamic

matrix [A] (Aij = Aij/p_D_R2)

(i_x,y , J = x,_ components of damping force matrix

(Cij = Cij/p_b_R 2)

' 22
pressure coefficient at volute inlet = 2(Pv(R2,g') -hl)/p2 R2

force acting on impeller iF* = F/p_b_2R_)

integration constant in Bernoulli's equation

(i_ x,y, j = x,_) coefficients of the jerk force

(Jij = Jij / p_bR_/_)

(i_x,y , j = x,_)_ components of stiffness force

(Kij = Kij/p_bn-R _)

(i_ x,y, j = x,_) components of inertia force

(Mij = Mij/p_bR _)

* 22
pressure in impeller (Pi = 2Pi/P_ R2)

* p_2R_pressure in volute (Pv = 2Pv/ )

impeller radius ( with no subscript, R = R2/R I)

radius of pressure tap ring

velocity in volute ( with no subscript, V = Vg,/_R 2)

width of impeller at R2 (Wi = Wi/b)

perturbation function for impeller flow

angular location of the impeller center (= _t = constant)

angle of flow path through impeller

distance between impeller and volute centers (s* = z/R 2)

fluid density

flow coefficient = flowrate through pump/2_bGR_

22
total head rise coefficient = (ha- hl)/p _ R2

orbit speed of impeller center (whirl speed)

force

[c]

matrix [J]

matrix [K]

matrix [M]
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Subscripts:

c,s

d

exp

m

P

r,@

x,y

1,2

rotational speed of impeller (shaft speed)

cos _t and sin _t components (non-dimensionalized)

downstream of pump

experimental result

force component due to momentum exchange

force component due to pressure

radial or angular component

components in rectangular directions (real = x and imaginary = y)

impeller inlet and discharge

Superscripts:

measurement made in volute reference frame

,J

measurement made from frame fixed to rotating impeller

non-dimensionalized quantity

Special Notation:

v

V

underbar denotes vector quantity

overbar denotes centered impeller value (non-dimensionalized)

[A]

x

square brackets denote a matrix quantity

dot represents a time derivative

IN TR ODU CT ION

Several sources, both dynamic and hydrodynamic have been identified as

contributing to the forces on centrifugal pump impellers. Figure 1 shows a typ-

ical configuration for a centrifugal pump with a few of the key components

identified• The primary emphasis of this study was to investigate the forces

that result from the hydrodynamic interaction between the impeller and the

volute. The usual design criterion for a volute is that it should provide

minimum interference to the symmetric impeller discharge flow that would occur

if no volute was present. However, the discharge flow pattern will depend upon

the overall flowrate through the impeller. Once the flowrate changes, the

discharge conditions around the impeller become asymmetric for any given volute•

Even at the volute design flowrate, the discharge conditions could still become

asymmetric if the impeller is displaced from the "design" center of the volute

by shaft deflection, bearing wear, etc.. In either case, the end result of the
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asymmetric discharge conditions is that there will be a net radial force on the

impeller (see Figure 1).

It is customary in rotordynamic analyses to

acting on the rotor in terms of a steady

impeller, and a time dependent part due to the impeller whirling in

circular orbit. Referring to Figure i, these terms may be expressed as

linearize the radial forces

portion acting on the centered
a small

(1)

where F and F result from the interaction of the centered impeller with the

volute,Xand th_ matrix [A] relates the perturbed force to the eccentric position

of the impeller. The [A] matrix will be a function of the whirl speed, _, and is

often expressed as a quadratic in m so that the system resembles a simple stiff-

ness, damping, and mass model.

The steady or mean forces, F and F , have been examined in several studies

and an understanding of them has _een greatly enhanced through papers by Iversen

et al. [9], Csanady [7], and Agostinelli et al. [2] to name a few. All of these

authors have shown that there is a particular flowrate where forces on the

impeller will be minimized for a given volute. Previous experimental [5,10] and

theoretical [6] investigations have also shown that the components of [A] are

such that a whirling motion of the impeller would be encouraged rather than

dissipated by the hydrodynamic effects. This has created concern that the rotor

assembly may whirl at one of its critical speeds even though the shaft may be

rotating well above this speed. There also exists the problem of the alternating

flexural stress that would be developed if the impeller whirls at a

subsynchronous speed (see Ehrich and Childs [8]).

In the current study, a theoretical model of the volute and impeller flows

will be developed and compared to experimental results. Previously, a potential

flow model for the steady forces on a centered impeller was given by [?] and

this work was later extended by [6] to include the effects of the impeller whir-

ling within the volute. Although the potential flow model presents a more clas-

sical approach of solving for the forces, problems arise in relating the two

dimensional theoretical volute profile to the three dimensional geometry of a

real volute. For this reason, a bulk flow description of the flow through the

volute is chosen for the current work. A similiar treatment of the volute flow

was presented by [9], but the influence of this flow on the impeller discharge

conditions was largly ignored and only the non-whirling impeller was considered.

The impeller/volute interaction will be included along with the effects of

impeller whirl in the present analysis.

THEORETICAL ANALYSIS

In developing the theoretical model, the problem is broken into its two

natural parts; models are constructed for the flow through the impeller and in

the volute. The equations that are generated in these two parts are then

combined by matching the pressures and velocities at the impeller discharge to

those at the volute inlet. A full development of this model can be found in
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reference [i] and only brief summary will be presented here.

Governing Equations for the Impeller

To

simplified unsteady form of Bernoulli's Equation is written as

Figure 2 illustrates the geometries used in developing the impeller model.

relate the pressure between the inlet and discharge of the impeller, a

v2 _2r,,2
Pi+

P +; av ds"-m2e I ,,cos(_t-nt-O")dr"
at s

- _'_ ; sin(_t - Qt - O")r"d 0"= F(t)

S #w

2 2

(2)

Here the flow is assumed to be two dimensional and the impeller whirl speed

constant.

To simplify the model, certain assumptions must be made about the velocity

field within the impeller. Specifically, the flow in the impeller is assumed to

follow a spiral path with inclination angle, y, which is fixed relative to the

impeller for a given flowrate and head rise so that

IP

O2 = 0" + tan ¥ ln(r"/R2)_ (3)

#l

Here (r",O") and (R2,0.) are the coordinates of a general point on a stream-
line within the impeder and at the position of discharge respectively. The

flow path angle, ¥ , of the streamlines is permitted to deviate from the

impeller blade angle. It is determined in a manner described in Section 2(c) so

that the theoretical and experimental head/flowrate characteristics coincide.

To account for the asymmetry caused by the volute, a circumferential perturba-

tion is superimposed on this impeller flow. This flow perturbation is assumed

to be stationary in the volute reference frame. Together, these observations

require that

r 2 )_/, 2 ,,v= (v ,, +Vo, , =4_R 2 _(O",r ,_t,_t,e)sec 7/r" (4)

The perturbation function _, must from continuity considerations be constant

along a streamline. For whirl motions with small eccentric orbits, _ may be
linearized as

_(O",r",_t,mt,8) =_(02) +_ {_c(02)cosmt +_s(O2)sin_t} (5)

Equations (4) and (5) can now be substituted into Equation (2). The pressure at

the impeller discharge is then given as a function of _ and the inlet pressure.

The pressure is not known at the inlet of the impeller, but it can be written in

terms of the inlet total head which is assumed to be circumferentially constant.

If there is no pre-swirl at the inlet, this will give the inlet pressure as
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P_(RI,O 1) =h 1 - _R_(O 2){_ R_(O 2) +28 _sin(O 1-_t)}

- 28"_ 2 R2 _(02) {_o(02)cos _t + _s(O2)sin _t} (6)

for small eccentric displacements. By utilizing Equations (4) through (6) and
neglecting terms of order _ and higher, Bernoulli's Equation can now be

separated into harmonics with steady, 8 cos mt, and 8 sin _t dependence as

see 2 7[2 ln(R) _+ _ _'21 +_p
- 1 = 0 (7a)

2¢ see2 T[in(R) d_ + ¢ _c + _ in(R)_s] + Dpc

+ 2 _ [_ R _ sin(O 2 + tan 7 in(R)) - cos(O 2

2

+ tan 7 in(R))/R]/ta n2 7 = 0
- 2_ [cos 02 - cos(O 2

- sin 02
dO 2

+ tan 7 in(R) )/R]

(7b)

2¢sec 2Y[In(R)d_+ ¢_s- _ in(R)_c] +Dps

- 2 _ [4 R _ cos(O 2 + tan 7 in(R)) + sin(O 2

2

- 2 _ [sin 02 - sin(O 2

dD

+ cos 02 --_
dO 2

+ tan 7 In(R))/R]

+ tan 7 In(R))/R]/tan2 7 = 0 (7c)

where

Dp(e') =Dp(e w) + g [Dpc (O')cos _t + Dps(O')sin et] (8)

In Equations (7a-c) the impeller discharge pressure coefficient, D (0'), has

been transformed into the impeller reference frame by the approximation,

02 = O' + 8 sin(O' - mt). This will prove convenient in the future, because the
pressure at the impeller discharge is assumed to be equal to that at the volute
inlet.

Governing Equations for the Volute

The geometries used in developing the volute model are shown in Figure 3.

The volute flow will be described by a continuity equation, a moment of momentum

equation, and an equation of motion in the radial direction. Each of these three
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equations can be written respectively as

a(wVot) 8(wr'Vr,)
+ -0 (9)aO w 8r _

8(wr'Vo,Vo,) a(wr'r'Vo,Vr,) aVO, aP v
+ wr'r' -- =- wr' __ (i0)

aO' + ar' at p 80'

and

aP v PV 9 ,V 0

ar' r'
(11)

Here it has been estimated that V , and V , (and their gradients) are much less

than V@,, except at the inlet of The volute.

Within the volute, the flow is considered to be primarily in the 0' direc-

tion and to have a flat velocity profile. This will allow Equations (9), (10),

and (11) to be integrated over the volute cross-section. When these equations

are combined with Equations (4) and (5), the pressure and velocity distributions

in the volute will be given in terms of moments of the volute cross-sectional

area and the perturbation function, _. Both Equations (9) and (10) can then be

separated into three parts (steady, e cos _t, and 8 sin _t) as follows:

Continuity:

d(V A)

dO o
-d_ (12a)

d (VcA) , d(V cos O') d(_ sine')

dO' =Wi dO' +_sin0' +d[_c+ dO' ] (12b)

, d(V sin 8') d(_ cos 0')
__m O' -

dO' = Wi dO' Q COS + 4[_s dO' ] (12c)

Moment of momentum:

r-A d_ d(r-AV 2) __ d(V 2) _ _

2 dO' -- dO' rlnrA dO----7--+_(1- _tanT_)_ (13a)
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d__ d(rA V Vc)

2 dO ' dO '

S

+_(WisinO'V- rrAV s)

d(V-2cosO _) d(VV c)
+ (WT+ _) - 2rlnrA

I dO ' dO'

+ _2sin 0'_ 2 + _ cos 0'(_+ 2 - 2_ tan y _)_

wi
+ g(1 - 24 tan y _) (_c + sinO' d-_) + _- cos O' dO'

(ISb)

r-'A dDps = _ 2
2 dO'

d(rA V V s) _- (W_.cos O'V - rrA V )
dO ' Q i c

, _ d(V2sin 0') _ d(V V s)
+ (W.+ rA) - 2rlnrA

i dO ' dO '

- 42cos O'_ 2 + 4 sin O'(_ + 2 - 24 tan y _)_

wi
+ g(1 - 24 tan ¥_) (_s - cos O' d_V) + _- sin O' dO' (13e)

where

R3 R3

• in(r '/R 2) wdr '/bR 2A(O') =;R wdr'/bR2 lnrA(O') =_R 2
2

R3 R3

r-A(O') =;R2r'wdr'/bR22 • r---rA(O')=;R2r'r'wdr'/bR S
l

R3

rlnrA(O') = ;R2 r' ln(r'/R2)wdr'/bE 2
(14a-e)

and

* , V0 '
V (O') =V(O') +8 [V (O')cosmt +V (O')sin_t] _ (15)

c s QR 2

In Equations (12a-c) and (13a-c) the perturbation function• _• has been

transformed into the volute reference frame for convenience in obtaining a solu-

tion.

To complete the basic equations for the volute problem• Equation (11) may

be integrated to give the radial pressure variation in the volute as
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P*= D-+ 2_2[in(r'IR2 ) - .*cos(g' - rot)] + +*[Dpc + 4_V e ln(r'IR2) ]cos mtv p
l

+ e [Dps + 4VVsln(r'/R2)]sln mt
(16)

Closure Conditions

Equations (7), (12), (13), and (16) will describe the flow in the impeller

and the volute after certain boundary conditions are satisfied. Even though

is referred to as the perturbation function, it was never assumed to be small.

However, from the definition of the flow coefficient, _ is required to have an

average of one. The flow perturbation is further assumed to possess at least

zeroth order continuity around the periphery of the impeller. This restriction

on _ can be met by satisfying the condition,

P(R 2,0) = 13(R2,2n) (17)

To account for what happens to the volute flow at the tongue, it is assumed

that the average total head of the recircu_ated flow will be constant across the

tongue, that is,
, f

R3 (O) R3 (O)

I v v02 I v v02, (P +p ,/2) I wdr' = , (P + p ,/2) 1 wdr' (18)

R2(O) 0'= 2_ R2(O) 0'= 0

From the remaining flow that is discharged, the flow path angle, 7, will be

determined. Previously it was stated that this angle will vary with flowrate and

total head. Using this stipulation, 7 can be found by equating the predicted and

experimental total head rises across the pump. This requires that

t_ex p =_'= [Dp(2_) + CvV2(2.)]/2
(19)

where

C = 1 + 2[lrmA(2n) - lrmA(O)]/[A(2_) - A(O)]
V

Admittedly, using an experimental result does limit the preliminary design

applications of this model. However, the "H/Q" curve (in dimensionless form the

function _ (4)) is normally available for any pump and it is important that
this fundamental characteristic is properly represented in the model.

This completes the development of the equations necessary to obtain _, D ,

and V. The nine ordinary differential equations of (7), (12), and (13) were

solved using centered differencing. The initial conditions of _, D , and V were
chosen in an iterative manner to satisfy the closure conditions stated above.
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HydrodynamicForces on the Impeller

Basically, there are two sources that contribute to the radial hydrodynamic
forces on the impeller. One part is due to asymmetric pressure distribution
around the impeller. The other is caused by the asymmetric momentumfluxes at
the impeller inlet and discharge. The first contribution is evaluated by
integrating the pressure around the inlet and discharge of the impeller:

2_ 2_ "

Fp = (Fx+ jFy)p = bfo Pi(Rl,Ol)RleJOldol - wifo Pi(R2,02)R2eJO2d02 (20)

where j denotes the imaginary part that corresponds to the y direction (see Fig-

ure 2). The second contribution is found by applying the momentum equation to
obtain

F m (Fx+ jFy) m . 0 2n R2 ,,

p-b= pb =- eJflt_ 0 _Rl(Vr"+ JVo")eJO r"dr"dO"

R2
f2

40" ,,]- eJflt[jo_(V "+ Jvo")Vr"e_ r"dO I

r R1

_ e 3"fit 2flfo2_fR1R2( JVr ,, - Vo ,,) eJO ,,r ,, dr ,,dO, '

+ _2en(R2- R2)e j_t (21)

When the pressure distributions of Equations (6) and (7) and the velocity

profiles described by the no inlet pre-swirl condition and Equations (3)-(5) are

applied to Equations (20) and (21), the resulting force on the impeller is

F* F* * *= +F =F+ e (F cos _t +F sin_t) (22)
~ ~p _m ~ ~c ~s

where

2_ 2 e
_=d2[W_sec2T +kR-2 +2J tan7 ]_0 _ (02) JO2do/2a

* 2¥ f2n-__ JO2d02 /-jg[W.secl ln(R) + 1]jO B(O2)e ff

2n JO2do2/n~cF = _2[W_sec2T1 + _ R - 2 + 2j tan Y]_O _(02)_c(02)e

* 2 2_ JO2d02/_- jg[Wisec ¥ ln(R) + 1]_0 _c(02)e

* 2 2_ JO2d02/_+ _ _[Wisec ¥1n(R) +k/R- 1]_0 _s(O2)e

2_ JO2do2/n ]+ _ [_RW_ 0 _(02)sin(e2+tan¥1n(R))e

(23a)
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2
to

2_ JO2do2/aF s = 42[W_.sec27 + k R- 2 + 2j tan 1'];0 _(02)_s(_2 )e

* 2 2n JO2de2 /- j4[Wisec 7 In(R> +1];0 _s(O2)e

* 2 2Ir JO2do2/n_ mfl4[Wise c 7 In(R) + k/R- 1];0 _c(02)e

, 2_ jO 2
- _-fl[4RWi_ 0 _(02)cos(e2+tanTln(R))e d021_]

2
to

° ; *- [ j[2j4+W /(kR)] - j {Wi[1-1/(kR)]/tan27-1 +I/R 2}

(2Sb)

(23c)

and, k = cos(tan y In(R) ) + j sin(tan y in(R) ).

Equation (1), these components are

Expressed in the terms used in

-- __ * * * *

E = Fx + jFy , Fc = Axx + jAyx , and ~sF = Axy + jAyy (24a-c)

Presentation of the calculated results will be postponed so that the

experimental and theoretical results can be discussed together.

TEST FACILITY

The experimental results presented in this paper were obtained using the

Rotor Force Test Facility at the California Institute of Technology, Pasadena.

Details of the equipment have been given in previous papers [3,4,10], so only a

brief description will be presented here. Figure 4 shows the test section where

the centrifugal pump being examined is located. The impeller is mounted on the

internal balance and the entire assembly is turned by the main shaft. The main

shaft passes through an eccentrically drilled cylinder, which when rotated,

causes the impeller to whirl in a 0.0990 inch diameter circular orbit. Forces on

the impeller are sensed through strain gauges on four posts located in the

internal balance. The relationships between the strains and forces were found by
static calibration tests.

Descriptions of the impeller and one of the volutes that were tested are

given in Figures 5 and 6. The impeller (referred to as Impeller X) is a five

bladed cast bronze impeller with a specific speed of 0.57 and blade angle of

650 . The 860 spiral volute (Volute A) is constructed of fiberglass and designed

to be "well matched" with Impeller X at a flow coefficient of 0.092. The dimen-

sions of the volute cross-sections, shown in Figure 6, were used in evaluating

the integrals of Equations (14a-e).

Two modifications have been made on the test facility for the benefit of

this research. They were considered necessary in order isolate the interaction

between the impeller and the volute from external influences. The modifications
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are illustrated in Figure 7. To separate the flow in the volute from the annular

gap region, rings were installed 0.005 inch from the edge of the impeller. In

addition, the flange of the test section was removed so that the front shroud of

the impeller was exposed to the "reservoir-like" conditions of the test chamber

(see Figure 4).

The removal of the front flange of the test section was judged to be essen-

tial after pressure measurements were made in the annual gap region with the

flange in place and the rings removed. The measurements indicated that the fluid

trapped in this region was responsible for a hydrodynamic stiffness (see Equa-

tion (26)) given approximately by

:xxx1[01yx Kyyl 0.3 -1.6

J

When compared with Chamieh's [S] direct measurements of the total hydrodynamic

stiffness on the impeller (annular gap plus volute) given approximately by

ix [0011
it is seen that the contribution from the annular gap is significant. With the

flange removed, it was anticipated that the fluid forces on the front shroud of

the impeller would be largely eliminated.

COMPARISONS BETWEEN EXPERIMENTAL AND THEORETICAL RESULTS

A preliminary step in the theoretical calculations must be the estimation

of the impeller flow path angle, 7 (see Section 2(a)). In practice, information

on the actual total head rise as a function of flowrate is almost always avail-

able; an example for Impeller X and Volute A is presented in Fig.8. By setting

_=_^_ , the flow path angle, 7, shown in Fig.9 was obtained. Note that the

typic_= magnitude of 7 is about 80" while the blade angle of Impeller X is 65°.

Measurements of the static pressure of the discharge from the impeller were

made using holes drilled at the inlet to the volute (see Figures 6 and 7). The

circumferential pressure distributions are compared with the theoretical results

in Figures 10 and 11. The pressure taps were alternately placed in the front and

back of the volute, resulting in the slight oscillation of the data. The

results were obtained for a range of shaft speeds from £ = 800 to 1200 RPM, but

the non-dimensionalized pressures were found to be independent of the speed.

Figure 10 shows that the theory gives a good approximation of the the pressure

distributions over a moderate range of flow coefficients. For flow coefficients

larger than this range, the correlation begins to falter as shown in Figure 11.

It was concluded that the deviation was caused by the inadequacy of a one dimen-

sional treatment of the flow near the tongue of the volute. At the higher

flowrates, it has been suggested [11] that there is a reversal of the direction

of flow in the region just inside the tongue. The effect on the pressure

distribution of displacing the impeller is also demonstrated in Figure 11. The

model appears to follow the changes that occur, even when the absolute pressure

predictions are rather poor.
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A comparison between the experimental and theoretical steady forces on the

impeller is given in Figure 12. One set of experimental results was obtained by

placing the impeller in four equally spaced orbit positions and then averaging
the internal balance force measurements. The second set (for d = 0.06 and 0.10)

was obtained by integration of the discharge pressure measurements. The theoret-

ical model tends to overpredict the steady or average radial forces somewhat,

but it does give reasonable results considering the crudeness of the model.

Coldir_-Jorgensen's [6] steady force calculations for a 67.50 blade ar_le

impeller in an 86 ° spiral volute are also shown in Figure 12. The present model

appears to give a more accurate assessment of the steady forces when compared

with the experimental results. The agreement between the two sets of experimen-

tal data indicates that the primary cause of the radial force is the asymmetric

pressure distribution at the discharge of the impeller. Moreover, the theoreti-

cal model predicted that the discharge pressure was responsible for 99% of the

total force on the impeller while the net momentum flux contribution was essen-

tially negligible. It might also be of interest to note that over the entire

range of flowrates for which theoretical results are presented, the predicted

perturbation in the impeller discharge flow never exceeded 6% of the mean flow.

Figure 13 presents the components of the generalized hydrodynamic force

matrix, [A], that result when the impeller whirls in an eccentric orbit at the

pump design flowrate (d = 0.092). From the experimental data, it is seen that

the cross-coupled terms (i.e. A , A_x) imply that forces act in the direction
of the whirl orbit up to _I_ = 0._. _#h_Isdestabilizing influence is predicted

by the theoretical model to occur up to _IQ = 0.14. Due to the coupled nature

of Equations (7b) and (7c), it was not possible to calculate [A] beyond the

range of whirl ratios shown in Figure 13. This problem is believed to be the

result of the current limitations of the iterative technique used in obtaining
the solution.

As was mentioned in the introduction, it is a standard practice to express

the matrix elements of [A] in powers of _. By examining the Avx term in Figure
13, it is apparent that a quadratic in e will not adequately describe the

features of the matrix element. A cubic, however, can approximate all of the [A]

matrix element variations with m giving the coefficients of such an expansion
as

[ xx xyl[ KxxcxMxx3Jxy
yx yyj Ky x _Cyy + _2My x + 3jyy

- Kxy + _Cxx + _2Mxy - _3Jxx 1

Kyy + _Cy x + _2Myy - _3jyxJ

(25)

or alternatively as

[A(to/t_)] Y =- [KI

where

y - [C] - [M] _ - [J]
(26)

x=8 coset and y=e sin_t

The [K]0 [C], and [M] matrices correspond to the stiffness, damping, and iner-

tial components that are commonly employed in rotordynamics. Since the [J]

matrix is related to the third order time derivative of the impeller displace-
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ment (which is conventionally known as the jerk), it will be referred to as the

"jerk" matrix.

The resulting [K] matrix elements of the cubic expansion are given in Fig-

ure 14, and the [C], [M], and [J] matrix elements are presented in Figure 15.

Included in Figure 14 are the stiffnesses that were calculated using the force

measurements (from the internal balance and the pressure distributions) taken at

four impeller positions. Also shown in Figure 14 are the stiffnesses predicted

by Colding-Jorgensen [6] for an 86 o spiral volute. With the exception of the K
term, the current model does a fair job of describing the variation of stiffne_

with flowrate. The magnitudes, however, tend to be underpredicted by the theory.

Over most of the range of flow coefficients, the stiffness is such that it would

encourage the whirling motion of the impeller. The same is also true of the

damping when the flowrate drops below 4 = 0.07 as shown in Figure 15. The

magnitude of the damping components computed by [6] (not shown here) were less

than 10% of those predicted by the present model. In general, the inertial

force would discourage an orbital motion of the impeller, but it will tend to

drive the impeller in the direction of the displacement. The jerk force attains

significant values only at the lower flow coefficients.

CLOSING COMMENTS

A theoretical model has been developed to describe the flow in the impeller

and the volute, along with the interactions that occur between them. This

investigation was undertaken to provide a better understanding of the

destabilizing hydrodynamic forces that have been observed [5,10] on a whirling

centrifugal pump impeller. To implement the model requires only a knowledge of

the dimensions of the volute and impeller, and the total head rise across the

entire pump. Comparisons between the predicted and experimental results are

encouraging. Experimentation with different volute geometries and over a wider

range of operating conditions (flow coefficient and whirl ratio) would provide a

more crucial test of the theoretical model. It might also prove insightfull to

incorporate the effects of inducers and diffuser vanes into the theoretical

model. These devices are now commonly employed on many high performance

centrifugal pumps.

Previous experimental results [5,10] have tended to over-estimate the

contribution of the volute/impeller interaction to the total stiffness force

acting on the impeller. The over-estimation came about because of an asymmetric

pressure distribution in the fluid trapped on the front shroud of the impeller.

Since real pumps do have fluid in this region, it will be important in the

future to perform a detailed study of this area.
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Figure 14. Hydrodynamic stiffnesses as functions of the flowrate. Experimental
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Colding-Jorgensen's [6] results are for an 86 ° spiral volute with a

67.S o blade angle impeller.
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ON THE EFFECT OF CAVITATION ON THE RADIAL FORCES AND HYDRODYNAMIC

STIFFNESS OF A CENTRIFUGAL PUMP*

R.S. Franz, C.£. Brennen, A.S. Acosta, and T.K. Caughey

California Institute of Technology
Pasadena, California 91125

The asymmetric flow within a volute exerts a radial force on a centrifugal

impeller. The present paper presents experimental measurements of the radial forces

on the impeller in the presence of cavitation.

NOMEN CLATU RE

[A]

A1 ,A2

22
hydrodynamic force matrix, non-dimensionalized by prim r2b 2

impeller inlet area (_r12), outlet area (2_r2b 2)

b 2 impeller discharge width (0.62 in)

{F} 6-component generalized force vector

F1,F 2 components of the instantaneous lateral force on the impeller in the

rotating dynamometer reference frame

Fx,Fy components of the instantaneous lateral force on the impeller in the fixed

23
laboratory reference frame (X,Y), non-dimensionalized by p_ r2b 2

Fox,Foy values of Fx and Fy if the impeller was located at the the origin of the

23
(X,Y) coordinate system (volute center), non-dimensionalized by p_ r2b 2

* The authors are indebted to the NASA George Marshall Space Flight Center,

Alabama for continued sponsorship of this research under contract NAS8-33108.

We are also grateful for the help given by D. Brennen.
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FN,F T components of the lateral force on the impeller normal to and tangential

to the whirl orbit, averaged over the orbit, non-dimensionalized by

22
Pn_ r2b2e

F N = (Axx + Ayy)/2 F T = (-Axy + Ayx)/2

pl,Pt I upstream static, total pressure

P2,Pt2

PI

downstream static, total pressure

static pressure at impeller inlet, Ptl - P(A_I )2/2

Pv vapor pressure of water

Q flow rate

rl,r 2 impeller inlet, discharge radius (1.594 in., 3.188 in.)

t time

(X,Y) fixed laboratory reference frame

x,y instantaneous coordinates of the impeller center in the fixed laboratory

reference frame (X,Y), non-dimensionalized by r2

radius of the circular whirl orbit

e angle of the impeller on the eccentric circle, measured from the volute

tongue in the direction of impeller rotation

density of water

cavitation number,
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?

flow coefficient based on the impeller discharge area and tip speed, --_

_r 2 A2

Pt2-Ptl

total head cofficient, p2r^

W radian frequency of the impeller (shaft) rotation

INTRODUCTION

Earlier papers (refs.l-8) have described measurements of the radial forces and

hydrodynamically induced rotordynamic coefficients of centrifugal pumps with various

impellers and volutes. All of these earlier measurements were made in the absence

of any cavitation within the pump. Yet there is some evidence that the presence of

cavitation may have a significant effect on these forces and coefficients. Indeed

some tests of the high speed pumps in the Space Shuttle Main Engine have suggested a

change in the rotordynamics when cavitation occurs (ref. 9). The present paper is a

supplement to our earlier measurements of forces and coefficients and constitutes an

exploration of the influence of cavitation.

The references 6-8 provide a complete description of the facility. Briefly,

the dynamometer, composed of two parallel plates connected by four strain gaged

posts, is mounted between the impeller and the drive shaft. It measures the six

components of a generalized hydrodynamic force vector {F] acting on the impeller.

The impeller can be subject to whirling motion in an orbit eccentric to the volute

center, in addition to the normal impeller rotation. Since the eccentric motion is

in the lateral plane, perpendicular to the impeller centerline, only the two

components of the force vector {F] in this lateral plane will be discussed.

These forces can be represented by

Refering to figure I, F and F are in the volute frame of reference, and x and y
represent the coordinates oF the impeller center measured from the volute center.

Dimensionless quantities are used throughout (see Nomenclature for definitions).

The present results are only for the case of no whirl: x and y are fixed in time.

When the impeller is located at an angular position, e, on the circular whirl orbit

of radius e, equation (1) is written as

IFxl I I + [ A ] I 1 (2)

Fox e/r 2 cos8

Fy = Foy ' {e/r 2 sine

The steady lateral forces, represented by F and F, can be considered as the
sum of two forces: a fixed force, represente_ by F^Y and F., which the impeller

would experience if located at the volute center, and _force _e to the eccentric
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displacement of the impeller, represented by a "stiffness" matrix [A]. By taking

data at four fixed eccentric positions of the impeller, 90 degrees apart, the matrix

[A] and the vector {F } can be extracted. The gravitational and buoyancy forces on
O

the rotor are subtracted out.

EXPERIMENTS

In references 6-8 results were presented for a typical impeller (impeller X), a

five bladed Byron-Jackson centrifugal impeller with a specific speed of 0.5V,

operating in a spiral volute (volute A) at various impeller speeds (_ 2000 rpm) and

flow rates. In order to test under cavitating conditions, the impeller speed was

increased to 3000 rpm and the water was substantially de-aerated.

In the following pages the results for three different flow rates are

presented: the flow rates chosen are below design (_=0.060), design (_=0.092) and

above design (_=0.i04). Cavitation performance curves for each of these flow rates

are presented in figure 2. We observe that the breakdown cavitation numbers for the

three flow rates tested are 0.17, 0.26 and 0.30 respectively.

RESULTS

Results for the radial forces, F and FO , and for the stiffness coefficientsare presented in figures 3 through A qu1_k glance will show that large changes

occur in both characteristics as the pump approaches and passes through breakdown.

Notice that the steady force shown in figures S and 4 changes in both magnitude and

direction.

Figures 3 and 4 show that for g=0.060 the magnitude of {F } decreases with

performance loss with a small change in direction. For both g_0.092 and _=0.I04,

the magnitude of {F} has a minimum with decreasing head coefficent. For each flow

coefficient, the d_rection of {F } rotates away from the tongue. For _=0.092, {Fo}
Q

rotates through more than 180 ° as the pump progresses through breakdown.

Figures 5-8 show the hydrodynamic force matrix [A] from equation (2). These

no-whirl results corrrespond to -[K] of the quadratic fit of reference 2 to whirl

data for mass, damping and stiffness matrices. The three flow coefficients exhibit

the same trends. The diagonal elements decrease with performance loss. The off-

diagonal elements first decrease slightly in magnitude with lower cavitation number

then increase with performance loss. Figure 8 indicates that the off-diagonal ele-

ments do not change monotonically with head coefficient.

In summary, cavitation affects the steady forces, both the impeller-centered

force {F } and the hydrodynamic force matrix [A], exerted upon an eccentric

impeller. U It is useful to interprete the matrix [A] in terms of the average normal

force, FN, and the tangential force, F-, acting on a whirling impeller in the limit
as the whlrl speed approaches zero. Wi_h cavitation breakdown, the normal force is

reduced while the tangential force is increased. Further tests are planned to

examine the unsteady flow effects which occur at non-zero whirl speed. More specif-

ically, the frequency dependence in the matrix [A] (the damping and added mass

components) will shortly be examined as a function of cavitation number.
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Figure I Schematic representation of the position of the impeller within the

volute. The measured forces are indicated in the rotating dynamometer

frame (as F 1, F 2 ) and in the stationary volute frame (as F x, Fy).

Figure 2
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Cavitation performance curves for the three flow coefficients: @=0.060

(below design), @=0.092 (design) and @=0.104 (above design), for volute

A/impeller X at 3000 rpm.
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Figure 3 The dependence of the magnitude and direction of the volute force, {F },

on cavitation number for the three flow coefficients: d=O.060, _=0.0_2,

$=O.104, for volute Alimpeller X at 3000 rpm.
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on head coefficient for the three flow coefficients: d=O.060, $=0.0_2,

_=0.104, for volute A/impeller X at 3000 rpm.
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Figure 5 The dependence of the elements of the hydrodynamic force matrix, [A], on

cavitation number for $=0.060 (below design), for volute A/impeller X at

3000 rpm.
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The dependence of the elements of the hydrodynamic force matrix, [A], on

cavitation number for $=0.092 (at design), for volute A/impeller X at
3000 rpm.
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Figure 8 The dependence of the elements of the hydrodynamic force matrix, [A], on

head coefficient for _=0.i04 (above design), for volute A/impeller X at

3000 rpm.
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FORCE AND MOMENT ROTORDYNAMIC COEFFICIENTS FOR

PUMP-IMPELLER SHROUD SURFACES

Dara W. Childs

Texas A&M University

College Station, Texas 77843

Governing equations of motion are derived for a bulk-flow model of

the leakage path between an impeller shroud and a pump housing. The

governing equations consist of a path-momentum, a circumferential -

momentum, and a continuity equation. The fluid annulus between the

impeller shroud and pump housing is assumed to be circumferentially

symmetric when the impeller is centered; i.e., the clearance can vary

along the pump axis but does not vary in the circumferential direction.

A perturbation expansion of the governing equations in the

eccentricity ratio yields a set of zeroth and flrst-order governing

equations. The zeroth-order equations define the leakage rate and the

circumferential and path velocity distributions and pressure

distributions for a centered impeller position. The first-order

equations define the perturbations In the velocity and pressure

distributions due to either a radial-dlsplacement perturbation or a

tllt perturbation of the impeller. Integration of the perturbed

pressure and shear-stress distribution acting on the rotor yields the

reaction forces and moments acting on the impeller face.

Introduction

Figure I illustrates an impeller stage of a multi-stage

centrifugal pump. Leakage along the front side of the impeller, from

impeller discharge to inlet, is restricted by a wear-ring seal, while

leakage along the back side is restricted by either an interstage seal

or a balance-discharge seal. Lomakin [I] originally recognized the

major influence that seals have on the rotordynamlc response of

centrifugal pumps. Recent analysis and test results are provided by
references [2-4].

More recently, various investigators have considered the forces

developed by flow through the impeller and its interaction with either

a volute or a vaned diffuser. Cal Tech researchers [5] have presented

measured force coefficients for an impeller precessing in a volute.

Ohashi and Shoji [6] also provide measured force coefficients for an

impeller whirling in vaneless and vaned diffusers. More recently,

Bolleter et al. [7] from Sulzer Brothers, Ltd. have also presented test

results for an impeller in a vaned diffuser. The Cal Tech and Sulzer
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test programs use conventional impellers in their test programs, but
use a radial face seal to minimize or eliminate the forces which would

normally be developed by the wear-rlng seals. The face seals employed

by these investigators sharply reduce the leakage flow down the front

face of the impeller. The impeller tested by Ohashl et al. has flat,

parallel, front and back shrouds. Test results from all these

investigators suggest that impellers create relatively benign forces

from a rotordynamlc viewpoint. Ohashl concludes that impeller forces

would damp forward whirling motion in most operating conditions. The

Cal Tech and Sulzer researchers conclude that impellers would provide

positive damping unless a rotor's running speed exceeded its critical

speed by an approximate factor of 2.5. Hence impellers are predicted

to yield smaller destabilizing forces than bearings or long seals which

are predicted to yield destabilizing forces when the running speed

exceeds twice the critical speed.

There is some contrary evidence from operating pump experience

with respect to impeller forces. Specifically, Massey [8] cites

experience with an 11-stage pump which was unstable and whirled at 80%

of running speed; i.e., the pump was unstable when Its running speed

was only 1.25 times the critical speed. The HPOTP (High Pressure

Oxygen Turbopump) of the SSME also whirled at 80% of running speed [9].

Thls evidence suggests that some unaccounted-for destabilizing force Is

present in pumps. The present analysis Is aimed at investigating the

forces and moments developed by impeller-shroud forces.

A bulk-flow analysis is employed similar to that of Chllds and Kim

[3]. However the analysis is extended to account for the changing

geometry of impeller surface. In addition, the shear stress

contribution to the reaction forces Is accounted for, and the reaction-

moment coefficients are calculated using the approach of reference

[10]. Specifically, the following general model is used to define the

reaction forces and moments which arise for small motion of a pump

impeller about its centered position.
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where (Fx, Fy), (X, Y) define the components of the impeller reaction

forces and relative displacements, and (My, MX), (eY, eX) define the

components of the reaction moments and rotation (small-angles) vectors.

Geometry and Kinematics

Figure I illustrates the annular leakage paths along the front and

back sides of a typical shrouded impeller of a multistage centrifugal

pump. The present discussion concentrates on the flow and pressure

fields within the forward annulus; however, the analysis also applies

to the rear annulus. As illustrated in figure 2, the outer surface of

the impeller is a surface of revolution formed by rotating the curve

R = R(Z) about the Z axis. A point on the surface may be located by

the coordinates Z, R(Z), e. The length along the curve R(Z) from the

initial point Ri, Z i to an arbitrary point R, Z is denoted by S and

defined by

Z R

S = I J I+ dR 2 du - I _ I + dZ 2 du (2)

Z i dZ R i dR

In the equations which follow, the path coordinate S and angular

coordinate e are used as independent spatial variables. The co-

ordinates Z,R defining the impeller surface are be expressed as

parametric functions of S, i.e., Z(S), R(S).

Trigonometric functions of the angle Y, illustrated in figure 3,
are defined as follows

dR

tanY =

dZ

dZ dR

cosy - m , slnY -

dS dS

(3)

The clearance between the impeller and the housing is denoted as

H(S,e,t), with the time dependency introduced by impeller motion. In

the centered position, the clearance function depends only on S and is

denoted by Ho(S). Displacement of the impeller in the X and Y

directions obviously causes a change in the clearance function. The

clearance function is also changed by pitching or yawing of the

impeller as defined by rotations _X, _Y about the X and Y axes,

respectively. For small displacements and rotations of the impeller
the clearance function can be stated

H(S,e,t) = Ho(S) - [(X + ayZ) cosy - ayRslnY] cose

- [(Y - axZ) cosy + axRslnY] sine

(4)

Observe in this equation that Ho, R, Z, cosy and sinY are solely
functions of S, while X, Y, _X, eY are functions only of t.
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Governing Equations

Returning to figure 2, the path coordinate S and circumferential

coordinate Re are used to locate a fluid differential element of

thickness H(S,e,t) illustrated in figure 4. From the geometry of

figure 4, the continuity equation can be stated

3H 3 1 3 H 3R

-- ÷ -- (UsH) + (UeH) ÷ (-) -- Us - 0
3t 3S R 3e R 3S

where Us and Ue are the path and circumferential bulk-veloclty

components, respectively.

Figure 5 illustrates the pressure and shear-stress components

acting on the differential fluid element. The first subscripts (s,e)

in the shear-stress definitions (_ss, _sr), (Tes, _er) denote path and

8 directions, respectively; the second subscripts (s, r) denote stator

and rotor surfaces, respectively. The path momentum equation can be

stated

3P U82 dR

H - - pH + _ss + _sr

3S R dS

+ pH
[3Us 3Us UO 3Us
-- + + _ U s )
3t 3e R 3S

The clrcumferential-momentum equation can be stated

. (3u0__3oo" _8s + T@r + pH + - + -- Us
R 3e 3t 38 R 3S

UoU s 3R
+- )

R 3S

Following Hits' approach [11],

these equations can be stated

the wall shear-stress definitions in

ns ms+1

_ss " -- P Us e Rams [I + (US/Us)2] --2"--

2

(5)

nr mr+ I

_sr " -- 0 Us 2 Ramr {I + [(Ue-R_)/U_ 2} --2---
2

ns ms+1

_es " -- P Us ue Rams [I + (US/Us)2] -"2---
2

nr mr+ I

TSr - -- p U s (U8 - Rm) Ramr {I + [(Ue-Rm)/Us]2 _ -"2"-
2
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where

Ra - 2H Us /v (6)

The empirical coefficients (ns, ms), (nr, mr) account for different

surface roughnesses on the stator and rotor, respectively.

Impeller-Annulus Geometry

For this analysis, the assumption is made that the impeller is

nominally centered in its housing. Hence, in the centered position,

the clearance function Ho(s) is only a function of the path coordinate

S and does not depend on the azimuthal coordinate RS. The inlet-

clearance function Ho(O) , the inlet path velocity Us(O), and the inlet

radius R(O) are denoted, respectively, by C i, V i, and R i. In terms of

these variables, leakage volumetric flowrate is defined by

- 2wRiCiV i (7)

The length of the leakage path along the impeller face is defined by

Zi+L

L s - I J l+ dR 2 dZ

Z I dZ

(8)

Nondimenslonalization and Perturbation Analysis

The governing equations define the bulk-flow velocity components

(Us, U8) and the pressure P as a function of the coordinates (Re, S)
and time, t. They are conveniently nondimensionalized by introducing

the following variables

us - Us/Vi, ue = Ue/Ri_, P - P/pVi 2

h - H/Ci, s - S/Ls, r - R/Ri (9)

= mt, b - Vi/R i m, T = Ls/V i

The objective of the present analysis is to examine the changes in (Us,

Ue, p) due to changes in the clearance function h(e, s, t) caused by

small motion of the impeller within its housing. To this end, the

governing equations are expanded in the perturbation variables

us - Uso + eUsl , h - ho + eh I

u@ - U@o + eu81 , p = Pc + ePl (10)

were ¢-e/C i is the eccentricity ratio. The following equations result:

Zeroth-Order Equations

(a) Path-Momentum Equation

dPo

ds
+ Uso

duso

ds

I dr )2(--) Cueo/b + (°s_°r) Us2- 0

r ds 2

(11a)
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(b) Circumferentlal-Momentum Equation

du8o UOo dr
2--+2

ds r ds

+ [Or(Ueo-r) + CsU8o] - 0 (11b)

(c) Continuity Equation

r h o Uso = I (11c)

observe that the continuity equation follows directly from Eq. (7)

First-Order Equations

(a) Path-Momentum Equation

apl
= hiA1s - u01 A2s - Usl A3s

as

Im ausl U0o aUsl
- T + _T

a_ r ae

(b) Circumferential-Momentum Equation

(12a)

+ Uso _U,_S]1

as ]

L s I apl

Ri r a8
= h I A18 - u01 A20 - us1A38 (12b)

[e auel Ueo aUel
- T + _T

a_ r ae

(c) Continuity Equation

aue 1]

+Us° _sj

aUsl _T aug 1
+

as r ae

hIUso dh o I

ho2 ds ho

+ Usl

I dr I dh o

(--- + )-

r ds ho ds

__ahl U8o ahl __ahl)[_Uso + _T + _T

ds r ae aT

(12c)

Most of the parameters of these equations are defined in Appendix A.

The quantities % and or are defined by

os = (Ls/H o) As , Or = (Ls/Ho)A r (13)

where As and Ar are dimensionless stator and rotor friction factors

defined by

ms+1

As = ns Rao ms [I + (UOo/buso)2] --2--"
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mr+1

Xr - nr Raomr {1 + [(Ueo-r)/bUso]2} --2-

Zeroth-Order-Equation Solutions
The zeroth-order Eqs. (11) define the pressure and velocity

distributions for a centered impeller position, For a known volumetric
flowrate, the continuity equation completely defines Uso. The
continuity equations can be used to solve for Uso to obtain

duso 1 dho 1 dr
---- . - Uso (-- -- + - _)

ds ho ds r ds

substituting into Eq. (11a) yields

dPo 1 dr Ueo2 F. or+on 1 dh0

C-) -- +ds r ds b2 ho ds

dueo U9o dr
-- ÷

ds r ds

USO2 = 0
r

+ [Or(Ueo-r) + OsUeo]/2 = 0

(14)

Those equations are coupled and nonlinear and must be solved

Iteratively. The initial condition for Ueo(O) is obtained from the

exit flow condition of the impeller. The inlet and discharge pressure

of the impeller are known and serve, respectively, as the exit (Pe) and
supply (Ps) pressures for the leakage flow along the impeller face.

The inlet conditions for Pc is obtained from the inlet relationship

Ps - Po (0, e, t) = p (I+{) Uso2(O, e, t)/2 (15)

From thls relationship, the zeroth-order pressure relationship is

Po(O) = PslpVI 2 - (I+_) Uso2(O)12 (16)

The impeller exlt may also include

relationship of the form
a restriction yielding a

P

P (Ls,e,t) - Pe = - Cde Us2 (Ls,e,t)
2

(17)

The solution to the zeroth-order Eqs. (14) must be developed

iteratively since all of the coefficients depend on the local path

velocity Uso. In this study, the equations are solved by the following
Iterative steps:

(a) Guess or estimate VI which then defines Uso(S).

(b) Calculate Po(O) from Eq. (16), and use a specified Ueo(O)
as initial conditions to numerically integrate Eqs. (14) out
to s = I, i.e., the annulus exit.
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(c) Based on the difference between a calculated exlt

pressure and the prescribed exit pressure, calculate a

revised V i and repeat the cycle until convergence Is achieved.

Flrst-order Equations Solutions
The flrst-order Eqs. (12) define the first-order perturbations

Usl (s,8,_), u81 (s,e,_), and Pl (s,8,_) resulting from the perturbed

clearance function h I. From Eqs. (4) and (9), h I can be stated

Eh I " {- +ay "_) COS_ + ey _-_) rslnY } cose

(18)

[y (L--) z] cos_ - aX [R-!i)rslnX,slne+ {- -aX Ci Ci

- hlc(S,T)cose + hls (s,_) sln8

The theta dependency of the dependent variables is eliminated by

assuming the following, comparable solution format

Usl - Usl c cos8 + Usl s sin8

u81 = u81 c cos8 + u81 s sine

Pl = Plc cos8 + Pls sin{)

Substituting into Eqs. (12) and equating like coefficients of cos8 and

sine yields slx equations in the independent variables s,x. By

introducing the complex variables

Usl = Uslc + J Usls

_I = Plc + JPls ,

, u81 = Uel c + J uel s

h I - hlc + j hls

(19)

these real equations are reduced to the following three complex

equations in s and _.

" hl AIs - u81 A2s - ._sl A3s
3s

T "'''_
Ueo _i

- J _T- Usl + Uso
r

(20a)

b

- J --

r

(--) Pl " hl Ale - uel A2e - _sl A3e

Ri

7T j _T _ uel + Uso ---

3"t r _s ]

(20b)
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aus 1 _T
-- J

as r
uel + u._.1

I dr

r ds

I dh o) .

ho d_

LUso dho _T u

h 1 + J
0 2 ds ho

Uso ah 1 _T a_h1

ho as h o a_

From Eqs. (3) and (17), h I can be stated

(200)

_h_1- -q
L dz

C-)- -_Go
bs ds

(21)

where

L2 dz R4 2 dr

Go- C_) z- * C_)r-
CiL s ds CiL s ds

(22)

q- x+Jy , _- ay- Jmx

From Eq. (21), the following additional result is obtained

ah 1 L d2z

_--.-q(-)--
as Ls ds 2

-aF I (23)

where

o z] lrl- (--) + z- + [ ) ÷ r-
CiLs Lds ds2 CiLs Lds dsRJ

The time dependency of Eqs. (20) is eliminated

harmonic seal motion of the form

(24)

by assuming

Jf_ Jf_ Jf_

q - qoe a - _o e hI - hloe (25)

f = fll(_

where fi is the seal whirl frequency and qo and So are real constants.
The associated harmonic solution can then be stated

Jf_ Jf_

.__sl = "Usl e _Uel - fuel e

Jf_

P_I " Pl e

(26)
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Substitution from Eqs. (25) and (26) into the governing complex partial
differential equations yields the following three complex ordinary
equations in s

-- u0 ÷ [A] u81_ = -- g2 + ( ) g5
ds _I Pl _ ¢ g3 g6

(27)

where
(28)

[A] -- I dr I dho

r ds ho ds

A3e/Uso

_T
---) j

I dr I dh o

ABs - Uso (- -- + ) + j rT

r ds ho ds
B

(A2e + JrT)/uso

A2S + j_Tuso

0

b

-j
ruso Ri

I::l
g3

L

=(-)
Ls

rT dz

F2 + j
hods

dz
_ (AI___e ) __

Uso ds

dz

AIs usoF2 - jUso
ds

FT dz

ho ds

(29)

g4

g5

g6

and

F3 + jG o rT/h o

-A18Go/uso

-GoAls - Uso F3 - JGouso rT/ho

r = _ (f-Ueo/r)

Uso

F2 = --
ho

d2z I dh o dz

( )
ds2 h o ds ds

Uso

F 3 :- [FI
ho

Go dh o

ho ds

(30)

(31)
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The following three boundary conditions are specified for the solution

of Eq. (27):

(a) The entrance-perturbation, circumferential velocity is zero,

i.e.,

m

u@1 (0) - 0 (32.a)

(b) The entrance loss

(15), and the

relationship is

at the seal entrance is defined by Eq.

corresponding perturbatlon-varlable

pl (0) -- (I + E)usl (0) (32.b)

(c) The relationship at the exit is provided by Eq. (17) and

yields the following perturbation relationship

m

Pl (1) = Cde Uso (1) Us1 (1) (32.c)

The value for Cde depends on the wear-rlng seal geometry. Solution

of Eq. (27) for the boundary conditions of Eqs. (32) is relatively

straightforward, involving successive solutions for displacement and

rotation excitations. The complete solution is the sum of the

_omogene_us solution (which depends on the unknown initial conditions

Pl (0), Usl (0)) and the particular solutions which are proportional to

either qo or a o. Complete solutions are developed separately for the
two vectors on the rlght-hand side of Eq. (27), which satisfy the

boundary conditions of Eqs. (32). By virtue of the problem's

linearlty, these two solutions may be added to obtain the complete

system solution or employed separately to calculate the rotordynamic

coefficients. The solution to Eq. (27), due to displacement

perturbation, is obtained by setting a o = O, and may be stated

1u81 " -- _f2c + J f2s

Pl E _f3c + J f3s f3

(33)

The soluton due to angular perturbations is obtained by setting qo " 0

and may be stated

u

c )'f4cf4il_--u01 " (f5c + J f5

Pl _fec + J f6
olf41
E f6

(34)

Reaction Forces and Moments

From figure 5, the differential force

dlfferentlal-lmpeller surface area can be stated

components acting on a

dF x - - (PcosY - Trs sinY) R dedS cose + _r@ sine R deds

dFy - - (PcosY - _rs sinY) R deds sine - _r@ cose R deds

dF Z - - (PsinY + _rs cosY) R deds

(35)
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The shear-stress contribution to these differentlal-force components

has been neglected in prior analysis of seals. The X and Y components

are used to define rotordynamic coefficients; the Z component

define_ the axial thrust. Taking moments of the differential force

vector about the origin of the X, Y, Z system yields the following

differential moment components.

dMx : I-[P(RsinY-Zc°_) + _rs (Rcos_ + ZsinY)] sin8 + Z _rSCOS8

R dSds

dMy : I-[P(RsinY-Zc°s_) + _rs (RcosY + ZslnY)] cos8 + Z Trssin8

R dSds (36)

dMz = -%r8 R2 dSds

The X and Y components yield rotordynamlc coefficients; the Z component

defines the drag torque.

From Eqs. (35) and (36), the force and moment perturbations are

stated

L s 2_

FXI = -El f

o o

L s 2_

+El f
o o

(P1cos_ - Trs I sinY) cos8 R dSdS

%r81 sine R dedS

(37a)

L s 2_

Fy1 : -of f

o o

L s 2_

-d f

o o

(PI c°s_( - %rsl sinY) sine R dedS

TrB 1 cose R dedS

(37b)

L s 2_

MXI = -el : [P1(RsinY - ZcosT) + Trs I (Rcos_+Z sinY)] R sine dedS

o o

(37c)

L s 27

+of f TrO 1 ZR cose dOdS

o o

My1 =

L s 27

o o

L s 2_

+d f
o o

[P1(RsinY - Z cosY)+ trsl (RcosY+Z sinY)]cose R dedS

(37d)

_r81 ZR sine dedS
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From Eq. (5), the perturbation shear stresses can be stated

_srl = PVi 2 (Bsl Usl + Bs2 u81 + Bs3 h I)

_8rI = PVi 2 (B81 Usl + B82 u@1 + B83 hl)

(38)

The coefficients of these equations are defined in the appendix.

Successive substitutions from (a) Eqs. (9) and (18), (b) Eqs. (19), and

(c) Eqs. (21), (24), and (26) into Eqs. (37) yields

-j f_

Fr+jF 0 (FxI+jFyI)e

Fo Fo

e_L s I{ L dz- [L dr
I _I (--) -- + Usl ( ) -- Bsl + J Bel

CdL o Ls ds L Ls ds

dr
+ _01

ds

(39a)

Bs2 + J BO + hl -- Bs 3 + J BO: rds

ds ]

Ms-jM r

FoL

where

Note that

-jfT

(My1-JMxI )e

FoL

Cd o L LLs

+ "Us1 [ (Ri) (Z dr
Us ds

[
Ls ds

I • dr
+ % (z--

L s ds

Fo = 2RiLAP

pVi2

AP = Ps - Pe = Cd
2

dr L dz I

r-- + (--) z-- ]ds Ls ds

oz ]r --) Bsl + J B81
ds

dz

r --) Bs2 + j B82
ds

Ir --) Bs3 + j B83
ds

rds

(39b)

(4O)

(41)
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is the total pressure drop along the leakage path from impeller

discharge to inlet.

Rotord_namlc Coefficients for Displacement Perturbations

Eqs. (39) apply for simultaneous displacement and slope

perturbations and are solved alternately for displacement and slope

perturbations. For the displacement solution, a o is set equal to zero,

and Eqs. (21) and (33) yield

Fr(f) _ (L s I If (LLq) dz (LRIs)dr
frq .... ) 3c -- + flc -- Bsl -fls Bel

qoFo Cd L o _ ds ds

_) d_ (LRi) dz dr 3]+ f2c ( -- Bs2 - f2s B82 - Bs rds

L s ds L2s ds ds

feq - -- - - -- I 3s (--) -- + fls -- Bsl +flc Bel

qoFo Cd L o Ls ds L s ds

dr L dz 1

+ f2s (--) --Bs2 ÷ f2c Be2- (--)- Be3J rds
Ls ds Ls ds

Me(f) _ Ls I

_q .... (-) s
qoFo L Cd L o

(42)

f3s El + flc E2 Bsl - fls Bel + f2s E2 Bs2

Mr(f)

mrq _ _ .
qoFo L

L oz3]- f2s Be2 - (--) E2 --Bs rds

L s ds

f3e El + fls E2 Bsl + flc Be1 + f2c E2 Bs2

Ls I

-(-)s
Cd L o

where

L 0z ]+ f2c B02 - (--) -- Be rds

Ls ds

Ri dr L2 dz
El " ( ) r -- + (--) z --

LL s ds Ls ds

dr dz

_,2 (-) (z
Ls ds ds

(43)
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The right-hand side of Eqs. (42) is only a function of the

frequency-ratio, f, and can be evaluated for selected values of this

parameter.

The comparable results from Eq. (I) are

Fr(f) ~ ~

frq(f) - -- = - (K + fc - f2M)

qoFo

Fe(f)

feq(f) = __ = k - TC

qoFo

Me(f)

meq(f) .... (_ + f_ - f2_

qoFo L a_ a_ _

(44)

Mr(f)

_mrq(f) _ _ _ f_ f2m B _ m

q rL-o_o" _ a_ _

Where the nondimensional coefficients are defined by

B KCi/Fo, k " kCi/Fo, H " MC i _2/F o

= CCi_IFo, _ = cCi_/F 0
(45)

a_ = KmECi/LFo, _ = CmE Ci_/LF°' _C - MmECi_2/LFo

~

_ = k_cCi/LFo, omE = c_Ci_/LF O , ma Ci_2/LFo

The dynamic coefficients are obtained by equating the right-hand sides

of Eqs. (42) and (44) and by carrying out a least-square curve fit on

the results from Eq. (42).

Rotordynamic Coefficients for Slope Perturbations

Applying the procedure of the preceding section to Eqs. (42) with

qo = 0 yields

fr (f) "

Fr(f) _ L I
---C-};

_oFo Cd Ls o

L dz Ri dr

[f6c {-) --+ f4c {--} - Bsl - f4s Be_
Ls ds Ls ds

Ri dr Ri dr

+ f5c{-} - Bs2- f5sBe2- Oo{--}- Bs3]rds
Ls ds Ls ds

Fe(f) _ L I r L dz Ri dr

fe (f) ..... {--) f [fes {--) -- + f4s {--) -- Bsl + f4c Bel
aoF o Cd Ls o Ls ds Ls ds
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Ri

+ f5s (--)
Ls

Bs2 + f5c B82 - Go B83] rds

Ms(f ) _ L I F

me_(f ) - - (--) I [f6c El + f4c E2 Bsl - f4s B81

soFo L Cd Ls o

+ f5c E2 Bs2 - f5c B82 - Go E2 Bs3j
rds

Mr(f ) _ L I r

mrs(f) - _ - - -- (--) I [f6s El + f4s E2 Bsl ÷ f4c B_91
eoFo L Cd Ls o

+ f5s E2 Bs2 + f5c B82 - Go B83J
rds

Eq. (I) yields the corresponding solution format

(46)

fre(f) -

Fr(f)

eoFo

Fe(f)

fe_(f) - -- =(k - fC - f2m )
_oFo ee e_

Ms(f)

mea(f) - - (k + fc - f2M )

eoFo L

(47)

Mr(f) ~ _ .

-mr_(f) I k - fC - f2m

eoFoL

where

= K /Fo, k - k /Fo, M = M _2/F o
Ca E_ _ Ca E_ £_

~ 2

- E _/Fo, - c _/F o m = m _ /F°

a _/F°L' = M _2 /FoL

6 - C _/FoL , c - c _/Fo_ m_ = m_2/Fo L

The rotordynamic coefficients are obtained by

side of Eqs. (46) and (47).

(48)

equating the rlght-hand

Predictions and Comparison to Experimental Results
Figures 6(a) and 6(b) illustrate, respectively, a nominal pump-

impeller geometry with a conventional wear-rlng seal and a modified

pump impeller with a face seal. Bolleter et al. tested the face-seal

impeller to eliminate the forces which would normally be generated by

the wear-rlng seal. Their tests were at best efficiency point (BEP)
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with the pump running at 2000 rpm, while developing 68m of head and 130

1/see of flow rate. The impeller has seven blades and an impeller exit

angle of 22.5 ° . The test fluid is water at 80OF.

The present analysis requires an estimate of the AP across the

impeller versus the total head rise of the stage. At U. Bolleter's

suggestion, the impeller AP was estimated to be 70% of the total AP of

the pump. An estimate of the inlet tangential velocity is also

required. Fortunately, pltot-tube measurements are available,

indicating that the inlet tangential velocity is approximately 50% of

the exit impeller surface velocity; i.e., USo(O) _ 0.5. This is in

contrast to a theoretlcally-predicted tangential velocity of 0.72 Rio)
based on the blade-exlt angle. Adklns' measurements at Cal Tech [12]

also show substantially lower exit tangential velocities than predicted

from exit blade angles.

Both walls of the impeller were assumed to be smooth and

represented by Yamada's [133 test data; mr - ms - -0.25, nr - ns -

0.079. The inlet loss for the impeller, _, was assumed to be 0.1. The

discharge coefficient for the seal was calculated iteratively as

follows. With an assumed Cde , Eqs. (14), (15), and (17) were used to

calculate the leakage through the impeller annulus and the pressure and

tangential-velocity upstream of the seal. The seal is then analyzed

(with the same equations) using the calculated seal inlet

pressure and tangential velocity to determine leakage and Cde. The

iteration continues until the leakage predictions for the exit seal and

the impeller annulus agree.

Figures 7(a) and (b) illustrate the predicted radial and

tangential force coefficients frq and fSq versus the whirl frequency
ratio f s _/m for the face-seal, impeller. Results are presented for

Ueo(O) = 0.5, 0.6, and 0.7. The Ueo(O) - 0.5 data of these figures is

generally consistent with expectations based on experience with seals

except for a slight "dip" in frq and "bump" in feq- However, the peaks

exhibited at higher value for Ueo are quite unexpected. They arise

primarily due to the centrifugal acceleration term in the path-momentum

equation. If the term

2Ueo dr

/ b2 ,

R ds

is dropped from the A2s definition of Appendix A, the "peaks" are

substantially eliminated from the force predictions.

Figure 8(a) and (b) provide predictions for frq and fSq for the
conventional wear-ring-seal impeller of figure 6(a). The predlcitons

are only for the impeller and do not include the exit wear-ring seal.

The feq results for the two impellers are quite similar; however, the

frq values are generally larger for the face-seal impeller.

Table I below provides zeroth-order-solution results for the

conventional-seal impeller of figure 6(b).
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Observe that the leakage is reduced by increasing USo(O). Also observe
the relatively high seal-inlet-tangential velocity prediction for the
exit seals, which will predictably lead to increased cross-coupled
stiffness coefficients and decreased rotor stability. The Reynolds
number values suggest that care should be taken in extrapolating
impeller force data from one operating condition to another.
Specifically, changes in temperature or operating media would be
expected to yield significant changes in force data.

The freqency-dependency of frq and fSq exhibited in figures 7 and
8 for Ueo(O) = 0.6, 0.7 can not be modeled by the rotordynamic-
coefficient model on Eq. (I). Stated differently, The quadratic
dependencyof frq and feq on f, which is specified in Eq. (44), is
simply not true. A significantly more complicated dependency is
clearly in order. While these results of figures 7 and 8 are
surprising, recent data from the Cal Tech program by Franz and Arndt
[14] are qualitatively similar.

The USo(0) = 0.5 results of figure 7 are reasonably modeled by a
quadratic dependency of f and can be modeled by rotordynamic
coefficients. A comparison of predicted and measuredcoefficients is
provided in Table 2.
Keeping in mind that the present theory does not account for the
momentum flux exiting from the impeller or the pressure forces
on the impeller exit, the comparison between theory and experiment of
Table I is encouraging. The prediction of C and M are good. The
results for k are consistent with Adkins [12] statement that the
impeller annulus accounts for approximately one half of the measured
stiffness values in Cal Tech test results. The results for K and c are
obviously dissappointing; perhaps these coefficients depend more
heavily on the impeller-diffuser interaction forces.

Conclusions and Extensions

An analysis has been developed for the forces on the shroud of an

impeller. The "bulk-flow" nature of the analysis restricts its

applicability to impellers having fairly small clearances between the

impeller shroud and casing.

The results of the analysis are unexpected in that resonances of

the fluid system are predicted at inlet tangential velocities which are

higher than approximately 0.5 Ri_. Conventional rotordynamic-

coefficient models are not an adequate representation of rotor forces

if the resonances are present. The resonance phenomenon predicted by

this analysis are in qualitative agreement with recent measurements

from Cal Tech [14].

Rotordynamic-coefficients predictions from this analysis are in

reasonable agreement with test results from Bolleter et al. [7], for

the direct damping and cross-coupled stiffness coefficients, C and k.

The analysis which was developed in this paper for impeller

shrouds can also be applied to seals and provides an expanded
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capability with respect to clearances as a function of axial or path

coordinate. Prior analyses have been developed for either constant-

clearance or convergent-tapered seals. The present analysis would

apply for any continuously varying clearance function. This option can

be directly used to account for elastic deformation of the seal bore

due to pressure or other loading. It also provides possibilities for

optimizing the clearance function to maximize stiffness, damping, etc.

The addition of shear-stress contributions in the present

analysis made very little difference in seal calculations. As yet, no

comparisons have been made on impeller force calculations with and
without the shear-stress contributions.

The importance of the moment coefficients, which are defined by

the represent analysis, are as yet undetermined. Current rotordynamlc

codes are not yet up to accept these coefficients; however, a code is

under development at TAMU which will account for these coefficients and

can be used to determine their importance.

The significance of the "resonance" phenomenon, which is predicted

by the present analysis, on rotordynamics also remains unsettled. An

analysis of the phenomenon is planned which will include curvefitting

the frq(f) and feq(f) predictions and examining their influence on a
Jeffcott rotor model.

The present analysis can be readily extended to account for axial

force coefficients. An extension of this nature is projected for the

coming year.

APPENDIX A

Perturbation Coefficients

AIs" [Os(1-ms) + or (l-mr)] Uso2/2ho

A2s -
2Ueo dr

'/b2 + [or (mr+l) Bo ÷ Os (ms+l) 81] Uso/2
r ds

duso

A3s - --'-'- + [(2 + mr) or + (2 + ms) os] Uso/2
ds

-[(1+mr) or 8o (Ueo-r) + (1+ms) os B1 Ueo] /2

Uso dr
2A18 - Uso [(l-mr) (Ueo-r) or + (l-ms) Ueo os + 2 -- --]/ho

r ds

Uso dr
2A2e - Uso (Or+O s) + or (mr+l) (Ueo-r) 8o + 2-

r ds

+ 0s (ms+l) Ueo 81
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2A38 = ar (Uoo-r) [mr- (1+mr) 80 (Ueo-r)/uso]

+ os UOo [ms - (1+ms) 81 Ueo/Uso]

Bo - (Ueo-r)/b2Uso {I + [(Ueo-r) /buso ]2}

81 - Ueo/b2Uso [I + (Ueo/buso)2]

T
r8 Perturbation Coefficients

Bel " Ar (1÷mr)(Ueo-r)[1-8o(Ueo-r)/Uso]/2b

B82 " Ar [Uso÷(1+mr)(ueo -r)B°]/2b

Be3 " _r mr (Ueo-r)Uso/2bh o

Trs Perturbation Coefficients

Bsl - Ar[(2+mr) Uso - (1+mr) 80 (UOo -r)]/2

Bs2 - _r(1+mr) 8o Uso/2

Bs3 - ArmrUso2/2ho
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UBo(O)/R i

U8o(I )/R(I )m

0.5

0.884

0.6 0.7

0.947 0.996
Ji

3.75 3.44m(Kg/sec) 4.03
.- , ,

Rao ffi2ViCi/_ 73,300 68,100 62,600

Table 1. Zeroth-order-solutLon results for the

convent Lonal-wear-r Lng Impeller.

Table 2.

Heasured

K(N/m) -.5x106

k(N/m) .6x106

C(N see/m) 2570*

c(N see/m) 7610

H (kg) 29.6

m (kg) I - 10.8

Theory
Face-Seal

Impeller

-.042x106

.288x106

2020

2290

8.96

*Combined viscous and hysteretlc damping.

Theory versus experiment for the face-seal impeller.
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ZhlPELLER SHROUD

WEAR RING _ SURFACES
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Fls'ure 1. Impeller stage.

Y

Z X

Figure 2. Impeller surface geometry.
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Fi&_ure 3- Local attitude angle of impeller surface.

\

\

Figure 4. Differential-fluid element.
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Figure 5. Free-body diagram for dlfferentlal-fluld element.

Figure 6. Nomlnal configuration of Sulzer test impeller [7]

with conventional wear-ring seal.
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INFLUENCE OF TORSIONAL-LATERAL COUPLING ON STABILITY

BEHAVIOR OF GEARED ROTOR SYSTEMS*

P. Schwlblnger and R. Nordmann

University of Kalserslautern

Kalserslautern, Federal Republic of Germany

In hlgh-performance turbomachlnery trouble often arises because of unsta-
ble nonsynchronous lateral vibrations. The instabilities are mostly caused by

oil-film bearings, clearance excitation, internal damping, annular pressure

seals in pumps, or labyrinth seals in turbocompressors. In recent times the
coupling between torsional and lateral vibrations has been considered as an

additional influence. This coupling is of practical importance in geared rotor

systems. The literature (refs. l and 2) describes some field problems in

geared drive trains where unstable lateral vibrations occurred together with
torsional oscillations. This paper studies the influence of the torsional-

lateral coupling on the stability behavior of a simple geared system supported

by oil-film bearings. The coupling effect is investigated by parameter studies

and a sensitivity analysis for the uncoupled and coupled systems.

INTRODUCTION

The dynamic behavior of many rotating machines (e.g., turbines and com-

pressor pumps) is influenced by the stiffness and damping characteristics of
nonconservatlve effects such as oil-film forces, forces in seals, and clearing

excitation forces. Besides the forced unbalance vibrations, unstable nonsyn-

chronous vibrations caused by such self-excltlng mechanisms may also occur.

Usually the stability analysis for this turbomachlnery is limited to a lateral

rotor dynamic analysis that is carried out independently from the torsional

vibration analysis. However, for geared rotor systems - that is, compressor

or turbogenerator sets (fig. l) - the torsional and lateral vibrations are

coupled because of the offset centerllnes of the geared rotors. Previously we

did not know how much this coupling affected the stability of the machine.

In the literature we find several publications concerning torsional-

lateral coupling in hlgh-performance turbomachinery with gears. Wachel and

Szenasl (ref. l) describe a field problem in a geared system where unstable
lateral vibrations occurred together with torsional oscillations. The authors

do not describe the coupling mechanisms, but they point out the importance of

gears for the exchange of energy between torsional and lateral vibrations.

Similar instability phenomena were observed on different units. Yamada and

Mltsul (ref. 2) deal with a two-stage ship gear supported by oil-film bearings.

During operation with partial load the pinion ran unstably. A coupled

torslonal-lateral analysis limited to the gear stage shows that the oil-film

*This research work was supported by Deutsche Forschungsgemeinschaft, German

Federal Republic.
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bearings are the source of instability, but the stability threshold is deci-
sively influenced by the torsional stiffness of the rotor system. Iannuzzelll
and EIward (ref. 3) point out that certain measuredelgenfrequencles of a com-
pressor train can be verified only by an analytical model that considers the
torslonal-lateral coupling in a gear stage. Simmonsand Smalley (ref. 4) found
by experimental and analytical investigations of a gas turblne/compressor train
that torsional modes(i.e., coupled torsional-lateral modes) with a superposed
bending componentat the gear wheel can be dampedsignificantly by the oll-film
bearings.

This paper investigates the influence of the torslonal-lateral coupling
in the gear on the stability behavior of a simple geared system (fig. 2). The
coupling effect is analyzed by meansof parameter studies and a sensitivity
analysis for the uncoupled and coupled systems.

NATURALVIBRATIONSOFGEAREDROTORSYSTEM

Mechanical Model

Figure l showsa typical turbomachlne consisting of two elastic shafts
connected by a reduction gear. The rotors run In oll-film bearings. Usually
the lateral vibration analysis (including a stability analysis) is carried out
for both shafts separately and independently from the torsional rotor dynamics
analysis. But in fact torsional and lateral vibrations of both rotors are
coupled by the gear. To study whether thls coupling may really be ignored In
a stability analysis, we first consider a simple geared rotor system. Figures
2 and 3 showthe model wlth two elastic shafts connected by a gear. The axes
of the shafts are offset by the angle of meshso that the tooth force acts in
the vertical plane on the gear wheels. Both shafts are elastic for torsion
and bending. Shaft l runs In two identical oil-film bearings that are the
only source of instability In the system. Shaft 2 is supported rigidly. Note
that not all the effects of the real machine can be investigated with the
simple model. Weconcentrate on the coupling effect in the gear stage and its
interaction wlth the self-exclted vibrations of the vibration system.

In a gear a strong torslonal-lateral coupling exists naturally because of
the mechanismof power transmission. The torsional momentfed Into the gear
is transmitted by tooth forces. For that reason transverse forces and bending
momentsresult from the torsional moment. Also the torsional and lateral
displacements of the gear wheels are coupled klnematlcally (fig. 4), provided
that both wheels maintain contact during operation. Without the lateral
displacement of the gear wheels the kinematic relation In a gear stage Is

rlql = r2 q2
(1)

This Is the model commonly used in rotor dynamics analysis. If we allow lat-

eral movement of the gear wheels, the geometric equation

rlql + q3 = r2q2 + q4 (2)

implies a coupling of the torsional and lateral degrees of freedom.
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From the theoretical considerations it is known that, for small vibrations

of the Journal bearings around a static equilibrium position, there is a linear

force motion relation for the oll film (fig. 5):

Af 1

Af 2

Fc11 c12

= -ic21 c22

k121 ql (3)

where

klk stiffness coefficients of bearings

Clk damping coefficients of bearings

The stiffness and damping coefficients depend on the rotational speed and

the static load on the bearing. The resulting static equilibrium position of
the shaft In the Journal bearing is characterized by the dimensionless

Sommerfeld number. In addition, the bearing coefficients depend on the load

direction, which must be taken into consideration for geared rotors, where the

gear transmlsslon forces often make up an appreciable part of the bearing load.

Available data for these coefficients assume a specific load direction (gravity
load direction), but in a geared rotor system the load direction may be dif-

ferent because it is governed by the gear mesh forces. Hence, if the bearing

geometry is such that the coefficients are sensitive to load direction, they

must be calculated by solving the lubrication equation or by using an approxi-

mate formula (refs. 5 and 6). As the coefficients normally are obtained in a

bearing coordinate system that does not coincide with the chosen system for

the geared rotor, a transformation must be performed. Besides being anlsotro-

plc, the stiffness cross-coupllng terms are generally unequal. This asymmetry
is the reason for self-exclted shaft vibrations.

For the statically indeterminate supported shaft in Journal bearings, the

calculation of the static load in the bearings leads to a nonlinear problem
that has to be solved numerically. The reason for this is the nonlinear force-

motion relation in the journals. In our study the static bearing loads due to

the transmitted power and rotor weight are estimated with the rigidly supported
shaft system.

An energy-flow diagram demonstrates how self-exclted bending vibrations

in a geared system may exchange energy with torsional oscillations by means of

the gear mechanism (fig. 6). The main energy flows from the motor to the gen-
erator to transmit the required power for the unit. Because of shear forces

in the oil film of the journal bearing, energy branches off from the main flow

to the bearing, where it may dissipate from oil-film friction or may excite

bending vibrations in the shaft and the gear. Because torsional and bending
displacements are coupled in the gear stage, torsional oscillations of the
geared rotor train also are excited. It is clear from these considerations

that the stability behavior is affected by this energy exchange between the
torsional and the lateral system.

533



Equations of Motion

To obtain the equations of motion for the simple shaft system (fig. 2)

wlth N degrees of freedom, we apply the principle of virtual work. Using

static deflection functions for the approximation of the displacements, we can
dlscretlze the model wlth continuous mass and stiffness distribution into disk,

shaft, and bearing elements connected at their nodes. The resulting energy

equation expresses that the sum of the virtual work done by the inertia, damp-

Ing, stiffness, and external forces is equal to zero:

6q/ { M ci+ D Cl + K q - f_(t) } = 0 (4)

where

M (N x N) mass matrix

(N x N) damping matrix

(N x N) stiffness matrix

(N x l) vector of displacements

(N x I) vector of external forces

To connect both shafts, we introduce the kinematic relation of equation (1)

for the uncoupled system and of equation (2) for the torslonal-lateral-coupled

system by the matrix equation

£:Z 3 (5)

where

ql

q2

q3

q4

and __ =

I

ql

q3

q4
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and for the torslon-bendlng uncoupled case

ql

I_i_l Irl "
Z = q2 .... _ "'" •

E IN

and for the torslon-bendlng coupled case

resp. -T-T= q2

ql q2 q3 1
: : :

E • : O"

rl ] l

r2 r 2 r 2

o I
.o .. • • o • • o • o.N

where

N=N-I

q(Nxl)

T(NxN)

reduced number of degrees of freedom

reduced vector of displacements

coupling matrix

E matrix of unity

The application of the constraint equation (5) to equation (4) eliminates the

torsional degree of freedom at one gear wheel (fig. 4) and yields the equation
of motion for the coupled system:

TT M T _ + TT D T _ + TT K T _q= TT f(t)

(6)

The matrices K and D contain stiffness and damping terms for the bearings.
They are asymmetric and depend on the running speed of the rotor and on the

transmitted load. The external load may be caused by unbalance or by gear-mesh

errors. Because our study is restricted to a stability analysis, we consider

only the homogeneous equations of motion (f = 0).

Lund (ref. 7) introduced a similar model for a geared train of rotors and

mentioned the influence torslonal-lateral coupling may have on the critical

speeds, stability, and unbalance response of the system. But he focused more

on the solution algorithm, which is a modified transfer matrix method, than on

the discussion of the stability behavior.
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Natural Vibrations - Eigenvalues and Natural Modes

The natural vibrations can be calculated from the homogeneousequations
of motion (f = 0).

Assuming a solution of the form _(t) = E • eXt, we obtain the quadratic

elgenvalue problem

(x2 + xb+ ) r=o

with 2N eigenvalues Xj and corresponding elgenvectors Ej- In most cases
elgenvalues as well as elgenvectors occur in conjugate complex pairs:

Eigenvalues - _j = _j + i_j Xj = _j - imj

(7)

(8)

where _j
constant.
make the system unstable, if
system runs stably.

Eigenvectors - _j = _j + itj _j = sj - it._j

We consider only the part of the solution that belongs to a conjugate complex

pair:

_j(t) = Bje_j t {_j sin(_jt +yj) + tj cos(_jt +yj)} (g)

is the circular natural frequency of this part and :j the damping

If the damping constant :j > 0, the natural vibrations increase and

ej < 0, the natural vibrations decrease and the

For the torsional-lateral-coupled system the elgenvalues are composed of

torslonal-lateral-coupled damping constants and elgenfrequencles. The corre-

sponding modes are set up by torsional and lateral components. We define the

expression in braces of equation (9) as the natural mode. In contrast to con-

servative systems there is no constant modal shape: proportions and relative

phasing generally vary from point to point at the shaft. The lateral compo-

nents of one natural mode represent a tlme-dependent curve in space. The plane

of motion of one point of the shaft has an elliptical orbit. The torsional

components of one natural mode also twist the shaft along its axis.

If we transpose the matrices M, D, and K, we obtain the so-called left-

hand elgenvalue problem

{_2 _T + x_T + _T} l = 0 (I0)

which has the same elgenvalues X but different elgenvectors !- Both elgen-

vector sets are needed to decouple the system matrices for the sensitivity

analysis of the elgenvalues.

First the elgenfrequencles and modes for the rigidly supported system are
calculated in the manner described. A similar system was studied by Ilda

(ref. 8). Because of its geometry (fig. 3), for bending purposes shaft 2 is

very stiff as compared with shaft l. Figure 7 shows the natural modes of
vibration where the torsional displacement of shaft l is multiplied by the

radius of gear wheel l and the twisting of shaft 2 is multiplied by the radius
of gear wheel 2 to match the dimension with the bending. With this
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normalization the kinematic constraint equation (1) equation (2) can be veri-
fied at once from the plot of the elgenvectors, because the sumof torsional
and lateral displacement at shaft l and shaft 2 must be equal at the gear mesh.

In the first modethe torsional displacement is rather predominant, but
in the second and fourth modesit is comparable to the flexural displacement.
In these two modesthe elgenfrequencles of the torslonal-lateral-coupled sys-
tem differ about 15 and 5 percent, respectively, from the solutions of the
uncoupled system. The third elgenvector lles in the x-y plane, which is per-
pendicular to the direction of the tooth force. Therefore for the rigidly
supported system it is a completely decoupled bending mode.

Whenthe coupling effect has such a strong influence on the elgenfrequen-
cles, how does it affect the damping constants of the elgenvalues for the oil-

film-supported system in figure 2? To answer this question, we calculate

the elgenvalues for the uncoupled and coupled systems. Because the bearing
coefficients depend on both the rotational speed and the static load on the

journal, the elgenvalues change with the running speed and the transmitted
load.

In figure 8, for the six lowest elgenvalues, the elgenfrequencies
(f = _/2_ rpm) and damping coefficients (a = _/2_ rpm) are plotted as a func-

tion of the rotational speed of shaft l for the uncoupled system (---) and

for the torsional-lateral-coupled system (_). In this diagram the static

load on the bearings remains constant during the alteration of shaft speed.
Static load is determined by the weight of the shaft and the transmitted moment

MM or MG (fig. 3).

It is obvious that most of the elgenfrequencles change only little and

that they almost coincide with the solutions for the rigidly supported system.

The reason for this is that the oil-film bearings in the investigated speed
range are relatively stiff as compared with the elasticity of the shaft.

Exceptions are the two whirling frequencies, which grow linearly with the rotor

speed. Their frequency is approximately one-half the speed of shaft I. They

belong to highly damped modes where the movement of the oil-film-supported
shaft represents a conical whirl in one of the two bearings.

In some modes the frequencies for the uncoupled and torslonal-lateral-

coupled systems differ essentially (e.g., the second frequency of the coupled

system is about 15 percent lower than that for the uncoupled system). Figure 9
shows the strong torslonal-lateral coupling in the corresponding elgenmode in

contrast to the first elgenvector, which remains an almost pure torsional mode
even in the coupled model.

The coupling affects not only the elgenfrequencles and modes but also the

damping constants (fig. 8). The zero passage of one damping coefficient indi-

cates the stability threshold of the system. In the uncoupled system all the

damping constants for the bending modes are negative up to a threshold speed

of 3745 rpm, where the first bending mode (f2 = 2157 rpm) becomes unstable.

It proves that the dangerous positive damping constants occur at the lower
bending elgenvalues. Because we have not introduced additional torsional

damping, the damping constants for the torsional modes (fl = 821 rpm,
f4 = 4370 rpm) are equal to zero.
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In the torsional-lateral-coupled system the lateral motion of the shaft

in the journals may contribute additional damping to the torsional modes

(fig. 6). An additional negative damping is in general desirable, but a posi-
tive damping, which may destabilize the torsional modes, is also possible.

Figure 8 indeed shows that the first weakly coupled torsional elgenvalue

(fl = 812 rpm) becomes slightly unstable at 1740 rpm. Obviously the insta-

bility whirl tends to lock in at the lowest system frequency, which in the
coupled case may be a bending or a torsional mode. Because negative torsional

damping Is always present in real machines (material damping, damping of the

surrounding media), the slight torsional instability of our coupled model
would not occur in practice. The next elgenvalue, which becomes clearly

unstable at 3510 rpm, belongs to the second strongly torslonal-lateral-coupled

mode (f2 = IBTl rpm). Its threshold speed is 7 percent lower than in the

uncoupled case. In addition, the third eigenvalue, which remains stable In

the uncoupled case, becomes unstable at a rotational speed of 4150 rpm In the

torslonal-lateral-coupled model. The corresponding elgenfrequency and elgen-

vector (an almost pure bending mode lying in the x-y plane, which is perpen-
dicular to the plane of tooth force action) nearly coincide with the solutions

of the uncoupled system (fig. 7). Therefore we conclude that although we can-

not recognize a strong torslonal-lateral coupling in the frequencies and modes,

the coupling may still affect the stability behavior. This effect is due to

the energy exchange between the torsional and bending vibrations at the gear

mesh (fig. 6).

It is important to note that the instability onset speed of the uncoupled
and the torslonal-lateral-coupled systems are not equal. The coupling mecha-

nism in gears may essentially lower the threshold speed. Classical uncoupled

stability analysis indicates that the system becomes unstable at the lowest
lateral threshold speed of the individual rotors. In a coupled analysis the

actual stability threshold may occur in a torsional or a strongly torsional-

lateral-coupled mode of the complete system.

DISCUSSION OF STABILITY BEHAVIOR

In a classical vibration analysis, which ignores the coupling between

torsional and lateral vibrations in gears, the torsional critical speeds are

only sensitive to torsional system parameters whereas the lateral elgenvalues

of an individual rotor depend only on its bending parameters. We use the

expression "torsional parameter" in thls context for rotary inertia or tor-

sional stiffness and "bending parameters" for quantities such as mass or flex-
ural stiffness. If we consider torsional and bending vibrations as coupled in

the gear, an elgenvalue is generally sensitive to torsional and bending param-
eters of all shafts. The effect of the coupling on the stability behavior of

the complete rotor system can therefore be studied by answering the questions

(1) How do modifications of torsional and bending system parameters change

the stability threshold? (Parameter study)

(2) How do changes of torsional and bending system parameters affect the

damping constant of the elgenvalues? (Sensitivity analysis)
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Parameter Studies

For the parameter study two torsional parameters and two bending param--

eters of the simple shaft system were selected (fig. lO). Figures II and 12

show how the stability threshold speed due to the zero passage of the second

elgenvalue (real part) changes when the chosen system parameters are varied.

As a reference model we take the torslonal-lateral-coupled model with the data

of figure 3. Its second elgenvalue becomes unstable at a speed of 3510 rpm.

The question Is now: How do respective torsional bending parameters affect
this Instablllty onset speed?

Figure ll shows the influence of the torsional stiffness _2 and rotary

inertia e2 of shaft 2. Of course the torsional parameters do not change the
stability threshold in the uncoupled model. In the coupled case, the rise of
the torsional stiffness _2 stabilizes the second elgenvalue, but a higher

rotary inertia Bp destabilizes it. At first sight (fig. ll) it appears
that a torslonall_ stiffer shaft 2 would make the system more stable. But

when the second elgenvalue becomes more stable, the first elgenvalue is

destabilized; therefore the stability threshold of the coupled system is

lowered by an increased torsional stiffness. Decreasing the rotary inertia

e2 produces similar results. This effect is ignored in figure ll because

only the real part of the second elgenvalue is considered.

Figure 12 shows that the influence of the bending parameters on the

threshold speed for the second elgenvalue is much stronger than the influence
of the torsional parameters. It is again interesting to note that the insta-

bility onset speed essentially depends on whether an uncoupled or a torsional-

lateral-coupled model is used. In our case a stiffer shaft l (kl) with a

smaller mass ml makes the system more stable. In both cases the stability

threshold for the coupled model is lower than for the uncoupled one.

We conclude from this study that the stability threshold speed is sub-

stantially influenced (1) by the model used in the coupled or uncoupled case

and (2) by the torsional and bending system parameters in the coupled case.
This fact indicates a strong torsional-lateral coupling relation to the

stability behavior.

Sensitivity Analysis

As a second tool to investigate the influence of the torslonal-lateral

coupling, we used a sensitivity analysis of the elgenvalues. This method

yields so-called influence coefficients, which describe the change of an

elgenvalue _n caused by a small modification of a system parameter Pk"

The influence coefficients for the real parts of the elgenvalues express how

sensitive the stability of the system is to parameter changes. The stability
threshold of an uncoupled model is only affected by the bending parameters of

the individual rotors. In contrast to that for the torslonal-lateral-coupled

system, an elgenvalue is generally influenced by torsional and bending param-

eters of all shafts. Therefore by the aid of the sensitivities of the real

elgenvalue parts for the uncoupled and coupled systems, the influence of the
torslonal-lateral coupling on the stability behavior can be discussed.
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This sensitivity analysis is based on an expansion of the eigenvalues In
terms of the generalized system parameters Pk, where the Pk may be mass,
damping, stiffness, or even physical parameters, for example, bearing clearance
(ref. 8):

_X _X _X
_n = Xn,o + n n n3Pl/o-APl + .AP2 + ... (11)3P2/o _Pk/o "Apk

Truncation of Taylor's expansion after the first derivatives leads to a linear

approximate formula. It Is shown in references 8 to 10 that the elgenvalue
derivatives can be expressed by the elgenvalues, by the left- and right-hand

elgenvectors of t_e _riginal system (subscript o), and by derivatives of the

system matrices M, D, and K to the parameters Pk (subscript k).

aX T O
n

=-1 .(X_ "_I,k_ + X D, +
_Pk/o -n n - k T<'k) -[n/o = gn,k

(12)

The eigenvectors must be normalized In a special way (ref. 10). The deriva-
tives are also called influence coefficients.

For the simple gear model we start from a point near the stability thres-

hold speed and investigate how particular parameters affect the stability

behavior. Figure 13 shows the influence of the torsional stiffness k2 on

the real and the imaginary part of the second elgenvalue. It can be seen that
increasing the torsional stiffness has a stabilizing effect on the second

elgenvalue. The corresponding influence coefficient calculated with the given

linear formula Is indicated by the tangent to the curve.

Figure 14 contains influence coefficients for the elements used in our

gear model such as disks, journal bearings, and beams. The influence coeffi-

cients in equation (12) represent an absolute measure for the changes of the

complex eigenvalues Xn = :n + i_n caused by parameter modifications.

By means of these coefficients a relative measure, the nondimensional sensi-
tivity, can be defined:

Pk
A_n4_nl S _ = Re(g n ). i
APk_k = n,k ,k _n

Amn/mn = S m = Im(g n ) Pk
APk p_ k n,k ,k mn

(13)

where Sn,k is the nondimenslonal sensitivity of the damping coefficient and
S_,k, of the natural frequency. Thls presentation has the great advantage

that the influence of several parameters on different modes can be compared
immediately.
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To show the Influence of torsional and bending system parameters on the
stability behavior of our rotor system, relative sensitivities for the real
part of the second elgenvalue were calculated near the threshold speed of the
uncoupled and coupled models (nl = 3680 rpm) and are plotted in figure 15.
It is important to note that the values of the relative sensitivities for the
uncoupled and coupled models are different.

Of course in the uncoupled model the torsional parameters do not affect

the real part of the second elgenvalue, which belongs to a pure bending mode.
The corresponding sensitivities are therefore equal to zero.

Nevertheless in the uncoupled model changes of the bending parameters of
shaft 1 have a strong Influence on the real part of the second elgenvalue.
Because the oil-film bearings are relatively stiff as compared with the bend-
lng stiffness of shaft 1, the changes of the shaft parameters (e.g., bending
stiffness, mass of the pinion) have a much stronger effect on the damping con-
stant than do the bearing parameters (e.g., clearance _). In the uncoupled
case the bending of the rigidly supported shaft 2 is not related to the oil-
film-supported shaft 1, which becomes unstable. Therefore the bending param-
eters of shaft 2 have no Influence on the stability behavior.

In the coupled model it is obvious that changes of the torsional param-
eters can have a strong influence on the real part of the second elgenvalue.

A comparison of the different torsional parameters points out that the main

influence is from the torsional parameters of shaft 2. Their relative sensl-

tlvltles are much greater than those of the torsional parameters of shaft I.

A look at the torsional components of the corresponding second mode makes the

reasons clear: shaft 2 shows a maximum displacement because of torsion at the
gear wheel and is much more twisted than shaft I.

The sensitivity of the torsional stiffness has a negative sign. An

increasing stiffness stabilizes the rotor system, as we have already seen in

the parameter study (figs. II and 13). The rotatory inertia of the second

gear wheel and of the generator have a positive sensitivity. Increasing

values of this parameter have a destabilizing effect (fig. ll).

Changes of the bending parameters have a stronger effect on the real part
of the second elgenvalue than do the torsional parameters. Because the bend-

ing of shaft 2 is for the coupled model connected to the oil-film-supported
shaft l by the coupling equation (2), its parameters also influence the sta-

bility behavior of our model. But as shaft 2 is almost too rigid to bend in

the second mode the influence coefficients of its parameters (e.g., mass of

the wheel and lateral stiffness) are relatively small.

Obviously the dimensionless sensitivities of the bending parameters of

shaft 1 differ essentially from the values of the uncoupled model. For

example, the influence coefficient of the clearance for the right bearing in

the coupled case is of about the same magnitude as that in the uncoupled case

but has the opposite sign. The sensitivities of the bending stiffness and the

mass of the pinion are essentially smaller than those in the uncoupled model.

The results show that the stability behavior of our model is particularly
influenced by the bending parameters of shaft l and the torsional parameters
of shaft 2. The differences in the solutions for the sensitivities in the
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uncoupled and coupled models indicate that the torslonal-lateral coupling must
not be neglected in discussing the stability behavior of geared rotors.

CONCLUSIONS

In this paper a study of the stability behavior is given for a simple
geared shaft system. It is shownthat the classical elgenvalue analysis, which
ignores the coupling of torsional and lateral vibrations in gears, may lead to
serious errors in the prediction of the stability onset speed, the critical
speeds, and the natural modes. Also it does not account for the damping of
the torsional modes,which is attributed to the lateral motions in the
journals.

The strong relation of torslonal-lateral coupling to stability behavior
is proven by parameter studies and sensitivity analysis, which show the influ-
ence of torsional and bending system parameters on the stability threshold and
damping constants.

The analytical results for the simple geared model remain to be verified
by experimental investigations and extended to more complex rotor systems.
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